Abstract:
A vehicle testing lamp system comprising an onboard controller unit, an off-board controller unit, and a lamp fixture. The onboard controller unit comprises a solid state relay, the solid state relay being switchable between an idle output power setting and a high output power setting; a timing circuit,; a transfer circuit; a current sensor; a current regulator; and batteries or other auxiliary power supply. The off-board controller unit comprises a power supply electrically connected to a voltage booster circuit. The lamp fixture comprises an ignitor; a shock mount; and a lamp that is electrically connected to the igniter. The off-board controller supplies power to the lamp at its idle level. The onboard transfer circuit permits the off-board power supply to be disconnected while the onboard controller unit maintains the lamp at idle, and the onboard timing circuit limits the time that the lamp remains at high output. Also disclosed is a method for using a vehicle testing lamp system.
Abstract:
A method and apparatus for correcting non-uniformities in the source and the lens assembly of an electrophoresis apparatus is provided. Assuming a detector with a uniform responsivity, correcting for source and lens non-uniformities allows quantitative measurements of an electrophoresis gel to be made, thus increasing the information which can be obtained from an electrophoretic analysis. The non-uniformities due to the illumination source are characterized by sampling a portion of the source with a linear detector array and creating a correction data file. In order to sample the source, a mirror or beamsplitter is appropriately positioned, for example along the central optical axis of the electrophoresis apparatus. Similarly, a correction data file representing the non-uniformities due to the lens assembly is created using a secondary linear source of known uniformity. After the correction data files are stored, an image of the sample is taken and a sample data file is created. The sample data file can be normalized using the correction data files thereby creating a corrected sample file which can either be displayed or stored for future use.
Abstract:
The invention relates to a method of identifying the individual autosomal and sex chromosomes of a human karyotype through the use of a set of combinatorially labeled oligonucleotide probes each member thereof: (i) having a predetermined label distinguishable from the label of any other member of said set, and (ii) being capable of specifically hybridizing with one predetermined autosomal or sex chromosome of a human karyotype.
Abstract:
A system for optical interrogation of a sample adaptable for multiple wavelength illumination and multiple wavelength fluorescent or luminescent light collection, wherein the illumination wavelength profile and the light collection profile may overlap. In the system, coherent light from one or more lasers is focused onto a target layer on a sample to excite fluorescent or luminescent light from the target layer. Emitted light is collected from a selected depth by a reflective light collector that transmits the collected light to detection optics. The reflective light collector directs collected light at an angle to the optical axis of the illumination light, thereby separating collected emitted light from illumination light. The light collector may collect light from a focus, whereby the focused illumination light combined with the focused light collection aid in limitation of the depth of field to a selected depth. Additionally, a spatial filter positioned between the light collector and the detection optics may be used to confine the depth of field to a selected depth. This device may be incorporated into an optical scanner by scanning of illumination light in a first direction and translation of the sample in a tangent direction. Alternatively, the illumination and detection optics may remain stationary and the detectable targets moved past a scanning location (e.g. as in electrophoretic analysis).
Abstract:
A system for the optical analysis of a sample. An illumination source illuminates the sample, exciting fluorescence. The fluorescence is collected by an objective lens, which transmits the collected illumination light onto an imaging lens, which focuses the collected light onto an area array detector. Collected light rays between the objective lens and the imaging lens are parallel and pass through an emission filter. Both the objective lens and the imaging lens are positioned on a mount that allows an alternative objective or imaging lens to be positioned to collect or image the emitted light. Any objective lens/imaging lens pair is optically symmetrical, greatly reducing the optically degrading effects.
Abstract:
An apparatus capable of measuring quantities of biological or other types of samples that have been labeled using any of a variety of techniques including fluorescence, radioisotopes, enzyme activated light emitting chemicals, and enzyme activated fluorescent materials is provided. The apparatus allows for either simultaneous or sequential acquisition of signals from multiple sample types. The apparatus is not restricted to a particular source or wavelength of excitation or readout light, nor is the apparatus restricted to a particular emission wavelength. The provided scanner includes a source module that preferably contains an internal laser emitting two different wavelengths of approximately the same intensity. An optional external light source may be coupled to the source module, thus adding further flexibility through the addition of other wavelengths (e.g., V, visible, mid-IR, and IR). The scanner also includes a detection module. Within the detection module are two detectors, thus allowing the simultaneous detection of multiple wavelengths. A bifurcated optical cable is used to transfer the excitation and/or readout light from the source module to the sample and subsequently transfer the emitted and/or scattered light from the sample to the detection module. The scanning stage of the scanner is designed to accommodate a variety of samples, ranging from phosphor screens, gels, and fluorescent samples to microtiter plates. An internal microprocessor is used to control the various aspects of the scanner, preferably including translation stage control, source filters, and detection filters. The internal microprocessor may be coupled to an external computer. The external computer may be used to change the programming of the microprocessor, provide a user interface to the microprocessor, process and store test results, and display sample images.
Abstract:
A method and apparatus for correcting non-uniformities in the lens assembly of an electrophoresis apparatus is provided. Assuming a detector with a uniform responsivity as well as a uniform illumination source, correcting for lens non-uniformities allows accurate quantitative measurements of an electrophoresis gel to be made, thus increasing the information which can be obtained from an electrophoretic analysis. Applying the system, the non-uniformities due to the lens assembly are first characterized for a range of aperture and magnification settings. A look-up table is then created which contains the non-uniformities and/or correction data files for the lens assembly according to the aperture and magnification settings. In order to correct a sample image, the aperture and magnification settings used to obtain the sample image are provided to the system processor. These settings may be automatically obtained by the processor or manually input by the user. After the processor receives the lens settings, it applies the look-up table to determine the corresponding lens non-uniformities as well as the necessary correction file. The sample image is then normalized by dividing the sample image file by the appropriate correction file. Once normalized, the corrected sample image file may either be displayed or stored for later use.
Abstract:
A method and apparatus of imaging fluorescence in situ hybridization (FISH) is provided. The instrument allows the user to simultaneously acquire images from several different colors. This system, used in conjunction with a combinatorial fluorescence approach, is able to create a FISH karyotype with each chromosome being painted with a different color. The optical system is continuously tunable over the detection wavelengths. In one embodiment of the system the sample is simultaneously irradiated in more than one wavelength band and the detection system uses a common path interferometer to scan through the detection wavelengths.
Abstract:
A method and apparatus of imaging fluorescence in situ hybridization (FISH) is provided. The instrument allows the user to simultaneously acquire images from several different colors. This system, used in conjunction with a combinatorial fluorescence approach, is able to create a FISH karyotype with each chromosome being painted with a different color. The optical system is continuously tunable over the detection wavelengths. In one embodiment of the system the sample is simultaneously irradiated in more than one wavelength band and the detection system uses a common path interferometer to scan through the detection wavelengths.