Abstract:
A single photon detector (SPD) includes a resonator to store probe photons at a probe wavelength and an absorber disposed in the resonator to absorb a signal photon at a signal wavelength. The absorber is also substantially transparent to the probe photons. In the absence of the signal photon, the resonator is on resonance with the probe photons, thereby confining the probe photons within the resonator. Absorption of the signal photon by the absorber disturbs the resonant condition of the resonator, causing the resonator to release multiple probe photons. A photodetector (PD) then detects these multiple probe photons to determine the presence of the signal photon.
Abstract:
Apparatus for nanofabrication on an unconventional substrate including a patterned pliable membrane mechanically coupled to a membrane support structure, a substrate support structure to receive a substrate for processing, and an actuator to adjust the distance between the pliable membrane and the substrate. Nanofabrication on conventional and unconventional substrates can be achieved by transferring a pre-formed patterned pliable membrane onto the substrate using a transfer probe or non-stick sheet, followed by irradiating the substrate through the patterned pliable membrane so as to transfer the pattern on the pliable membrane into or out of the substrate. The apparatus and methods allow fabrication of diamond photonic crystals, fiber-integrated photonic devices and Nitrogen Vacancy (NV) centers in diamonds.
Abstract:
The next-generation of optoelectronic systems will require efficient optical signal transfer between many discrete photonic components integrated onto a single substrate. While modern assembly processes can easily integrate thousands of electrical components onto a single board, photonic assembly is far more challenging due to the wavelength-scale alignment tolerances required. Here we address this problem by introducing a self-aligning photonic coupler insensitive to x, y, z displacement and angular misalignment. The self-aligning coupler provides a translationally invariant evanescent interaction between waveguides by intersecting them at an angle, which enables a lateral and angular alignment tolerance fundamentally larger than non-evanescent approaches such as edge coupling. This technology can function as a universal photonic connector interfacing photonic integrated circuits and microchiplets across different platforms. For example, it can be used in a self-aligning photonic circuit board that can be assembled more easily, with larger misalignment tolerances, than other complex optoelectronic systems.
Abstract:
A process is provided for the high-yield heterogeneous integration of ‘quantum micro-chiplets’ (QMCs, diamond waveguide arrays containing highly coherent color centers) with an aluminum nitride (AlN) photonic integrated circuit (PIC). As an example, the process is useful for the development of a 72-channel defect-free array of germanium-vacancy (GeV) and silicon-vacancy (SiV) color centers in a PIC. Photoluminescence spectroscopy reveals long-term stable and narrow average optical linewidths of 54 MHz (146 MHz) for GeV (SiV) emitters, close to the lifetime-limited linewidth of 32 MHz (93 MHz). Additionally, inhomogeneities in the individual qubits can be compensated in situ with integrated tuning of the optical frequencies over 100 GHz. The ability to assemble large numbers of nearly indistinguishable artificial atoms into phase-stable PICs is useful for development of multiplexed quantum repeaters and general-purpose quantum computers.
Abstract:
Quantum information processing involves entangling large numbers of qubits, which can be realized as defect centers in a solid-state host. The qubits can be implemented as individual unit cells, each with its own control electronics, that are arrayed in a cryostat. Free-space control and pump beams address the qubit unit cells through a cryostat window. The qubit unit cells emit light in response to these control and pump beams and microwave pulses applied by the control electronics. The emitted light propagates through free space to a mode mixer, which interferes the optical modes from adjacent qubit unit cells for heralded Bell measurements. The qubit unit cells are small (e.g., 10 μm square), so they can be tiled in arrays of up to millions, addressed by free-space optics with micron-scale spot sizes. The processing overhead for this architecture remains relatively constant, even with large numbers of qubits, enabling scalable large-scale quantum information processing.
Abstract:
Many of the features of neural networks for machine learning can naturally be mapped into the quantum optical domain by introducing the quantum optical neural network (QONN). A QONN can be performed to perform a range of quantum information processing tasks, including newly developed protocols for quantum optical state compression, reinforcement learning, black-box quantum simulation and one way quantum repeaters. A QONN can generalize from only a small set of training data onto previously unseen inputs. Simulations indicate that QONNs are a powerful design tool for quantum optical systems and, leveraging advances in integrated quantum photonics, a promising architecture for next generation quantum processors.
Abstract:
A buffer layer is employed to fabricate diamond membranes and allow reuse of diamond substrates. In this approach, diamond membranes are fabricated on the buffer layer, which in turn is disposed on a diamond substrate that is lattice-matched to the diamond membrane. The weak bonding between the buffer layer and the diamond substrate allows ready release of the fabricated diamond membrane. The released diamond membrane is transferred to another substrate to fabricate diamond devices, while the diamond substrate is reused for another fabrication.
Abstract:
A large-scale tunable-coupling ring array includes an input waveguide coupled to multiple ring resonators, each of which has a distinct resonant wavelength. The collective effect of these multiple ring resonators is to impart a distinct time delay to a distinct wavelength component (or frequency component) in an input signal, thereby carrying out quantum scrambling of the input signal. The scrambled signal is received by a receiver also using a large-scale tunable-coupling ring array. This receiver-end ring resonator array recovers the input signal by imparting a compensatory time delay to each wavelength component. Each ring resonator can be coupled to the input waveguide via a corresponding Mach Zehnder interferometer (MZI). The MZI includes a phase shifter on at least one of its arms to increase the tunability of the ring array.
Abstract:
Component errors prevent linear photonic circuits from being scaled to large sizes. These errors can be compensated by programming the components in an order corresponding to nulling operations on a target matrix X through Givens rotations X→T†X, X→XT†. Nulling is implemented on hardware through measurements with feedback, in a way that builds up the target matrix even in the presence of hardware errors. This programming works with unknown errors and without internal sources or detectors in the circuit. Modifying the photonic circuit architecture can reduce the effect of errors still further, in some cases even rendering the hardware asymptotically perfect in the large-size limit. These modifications include adding a third directional coupler or crossing after each Mach-Zehnder interferometer in the circuit and a photonic implementation of the generalized FFT fractal. The configured photonic circuit can be used for machine learning, quantum photonics, prototyping, optical switching/multicast networks, microwave photonics, or signal processing.
Abstract:
The typical approach to transfer quantum information between two superconducting quantum computers is to transduce the quantum information into the optical regime at the first superconducting quantum computer, transmit the quantum information in the optical regime to the second superconducting quantum computer, and then transduce the quantum information back into the microwave regime at the second superconducting quantum computer. However, direct microwave-to-optical and optical-to-microwave transduction have low fidelity due to the low microwave-optical coupling rates and added noise. These problems compound in consecutive microwave-to-optical and optical-to-microwave transduction steps. We break this rate-fidelity trade-off by heralding end-to-end entanglement with one detected photon and teleportation. In contrast to cascaded direct transduction, our technology absorbs the low optical-microwave coupling efficiency into the entanglement heralding step. Our approach unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.