Abstract:
For the analysis of a sample in a method capable of wide application, the sample is reacted in a combustion reaction with elementary pure fluorine in a multiple molar excess in relation to the sample in a reactor of pure nickel so that the products of fluorination may be analyzed by spectrometry. A line spectrum can be produced in this manner, for example, from a silicon carbide sample combusted or reacted with elementary fluorine.
Abstract:
This invention pertains to a method for removing deposits of uranium compounds in uranium hexafluoride handling equipment. A fluorocarbon containing bromine is internally injected into the handling equipment at or below ambient pressure and this brominating agent removes uranium compounds which have been formed therein. A fluoridating agent is also preferably used in conjunction with the fluorocarbon containing bromine.
Abstract:
The use of polyoxymethylene di(alkyl polyglycol) ethers of the general formula RO(CH2CH2O)n(CH2O)m(CH2CH2O)nR is described, wherein R is an alkyl radical, n is ≦3 and m is ≦6, as additives to diesel fuels to reduce the particulate emission in self-ignition engines.
Abstract:
The invention relates to a method for the selective catalytic reduction of nitrogen oxides using ammonia in exhaust gases of vehicles, whereby solutions of guanidine salts with an ammonia forming potential of between 40 and 850 g/kg, optionally in combination with urea and/or ammonia and/or ammonium salts, are catalytically decomposed in the presence of catalytically active, non-oxidation-active coatings of oxides selected from the group containing titanium dioxide, aluminum oxide, silicon dioxide or the mixtures thereof, and hydrothermally stable zeolites which are fully or partially metal-exchanged. The guanidine salts according to the invention enable a reduction of the nitrogen oxides by approximately 90%. Furthermore, said guanidine salts can enable an increase in the ammonia forming potential from 0.2 kg, corresponding to prior art, up to 0.4 kg ammonia per litre of guanidine salt, along with freezing resistance (freezing point below −25° C.). The risk of corrosion of the guanidine salt solutions used according to the invention is also significantly reduced compared to that of solutions containing ammonium formiate.
Abstract:
The invention relates to the use of aqueous guanidinium formiate solutions, optionally combined with urea and/or ammonia and/or ammonium salts, for the selective catalytic reduction of nitrogen oxides using ammonia in exhaust gases of vehicles. The inventive guanidinium formiate solutions enable a reduction of the nitrogen oxides by approximately 90%. Furthermore, said guanidinium formiate solutions can enable an increase in the ammonia forming potential from 0.2 kg, corresponding to prior art, up to 0.4 kg ammonia per litre of guanidinium formiate, along with freezing resistance (freezing point below −25° C.). The risk of corrosion of the inventive guanidinium formiate solutions is also significantly reduced compared to that of solutions containing ammonium formiate.
Abstract:
A method for reducing the particle and nitrogen oxide proportion in an exhaust gas flow of an internal combustion engine includes supplying a reducing agent to the exhaust gas flow, subjecting the exhaust gas flow containing the reducing agent to particle filtering, and then carrying out a selective catalytic reduction of at least a portion of the nitrogen oxides in the exhaust gas flow. The method and an exhaust gas treatment unit make it possible to simultaneously reduce the proportion of particles and nitrogen oxides in the exhaust gas. Ammonia, in particular, is used as the reducing agent. Regeneration of the particle filter is promoted by leading an ammonia-containing flow of gas through the particle filter. The method and device make it possible to consume less fuel with the same reaction rate and, at the same time to reduce available installation space, in comparison with existing corresponding prior art systems.
Abstract:
A device for producing ammonia from urea pellets includes a pellet dispensing device, a pellet accelerator, a pellet shooting channel, and an ammonia reactor having a chamber or zone for shooting in urea pellets and a pellet deflector arranged on an end of the shooting path. The device further includes a urea pellet evaporation device and a hydrolytic catalytic converter. The urea pellets are removed from the reservoir in a regulated number/quantity by a dispensing device and transported to the accelerating device, where the pellets are moved from the pellet shooting channel into the ammonia reactor, where they are broken down into small pieces by impacting a pellet deflector at the end of the shooting path. The pieces are converted into a gas mixture containing ammonia and isocyanic acid by means of a urea evaporation device. The isocyanic acid is subsequently converted into ammonia and carbon dioxide.
Abstract:
The invention relates to a sorption catalytic converter for the combined chemo-sorptive and oxidative cleaning of diesel engine exhaust gases with a high blocking activity for highly volatile organic exhaust gas components, compounds sorbed on particles, moderately and scarcely volatile organic compounds (SOF), materials with a pungent odor, irritating materials, and ammonia, using an upstream NO.sub.x reducing catalytic converter, with measurable blocking activity for minute high carbon particles, with a high oxidation activity for CO and a restricted oxidation activity for NO and SO.sub.2 with a working range from the ambient temperature to 650.degree. C., comprising a monolithic honeycomb structure having channels adapted for free flow of diesel exhaust gas therethrough of the active mass or of inert carrier material, coated with the active mass, the active mass preferably being composed of V.sub.2 O.sub.5 /WO.sub.3 /MoO.sub.3 mixed oxides borne on sulfatized titanium dioxide, same being doped with platinum metal oxides at a concentration very low in comparison with oxidation catalytic converters, for increasing sorption and oxidation activity. The active mass is employed with 250-1400 g/1 coating composition, whereas for oxidation catalytic converters 50-200 g/1 of coating composition is typical. The significant inhibition of oxidation activity as compared with SO.sub.2 and NO results from a dilution effect (low level of platinum metal; high active mass) and a possible multi-layer structure with a platinum-free or platinum-depleted covering layer. The enhancement of the sorption and oxidation activity is rendered possible by the employment of covering layers with a high pore volume on a honeycomb structure consisting of an active mass whose pore volume is moderately high for reasons of mechanical strength.
Abstract:
A method of decomposing organic halogen compounds including fluorinated hydrocarbons in the gaseous phase on superacid catalysts comprising titanium dioxide, with the formation of carbon doixide and hydrogen halides and particularly hydrolysis of perhalogenated methane derivatives on a sulfated titanium dioxide catalyst, and hydrolysis and oxidation of organic halogen compounds on a catalyst of sulfated copper oxide and sulfated titanium dioxide. The hydrogen halides liberated by the decomposition of the organic halogen compounds can be easily removed by conventional methods such as scrubbing with water.
Abstract:
A process for removing adhering or dust-like deposits in an apparatus which handles uranium hexafluoride. The process includes the steps of:(a) reacting the deposits with a gaseous boron halogenide other than boron trifluoride, to form at least one uranium halogenide; and(b) reacting the at least one uranium halogenide with a fluorine containing substance to form uranium hexafluoride.