Abstract:
Variable repetition rate and wavelength optical pulse source, comprising a fixed or variable repetition rate source of supercontinuum pulses; a wavelength tunable optical bandpass filter to filter the supercontinuum pulses at two or more wavelengths, wherein said source of supercontinuum pulses and said wavelength tunable optical bandpass filter are configured such that the optical pulse source can provide variable repetition rate and variable wavelength optical pulses including a series of repetition rates with selected wavelength-varying pulse trains.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fiber, wherein the output fiber comprises a silica-based multimode optical fiber supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
A method of providing supercontinuum illumination in applications involving the excitation of fluorescence, comprising generating, at an optical pump laser, optical pump pulses at a pump pulse repetition rate; selectively controlling with an optical modulator the launch of pump pulses into a nonlinear optical element comprising an optical fiber at a variable, lower repetition rate to thereby selectively control the repetition rate of supercontinuum pulses generated within the optical fiber; and illuminating a sample with supercontinuum pulses to excite fluorescence. The supercontinuum pulses can be wavelength filtered such that the fluorescence is excited with wave length filtered supercontinuum pulses.
Abstract:
The invention can include an optical pulse source apparatus that includes the nonlinear generation of wavelengths, wherein the optical pulse source can comprise an oscillator for producing optical pulses, the optical pulses having a first wavelength; an optical fiber amplifier for amplifying optical pulses having the first wavelength; a nonlinear optical fiber receiving amplified optical pulses having the first wavelength to nonlinearly produce optical pulses that include wavelengths that are different than the first wavelength; and wherein the optical pulse source is configured so as to be operable to reduce the optical pulse frequency of the nonlinearly produced optical pulses.
Abstract:
A laser system for generating optical pulses at an operating wavelength of the laser system. The system has an optical resonator comprising first and second reflectors, and a tapered optical fiber disposed between the first and second reflectors. The tapered optical fiber has a core which has a tapered input section which tapers from single mode to multimode at the laser operating wavelength, an inner section of substantially constant diameter capable of supporting multiple modes at the laser operating wavelength and a tapered output section which tapers from a first diameter to a second diameter that is smaller than the first diameter.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
An optical system comprises an optical apparatus arranged to direct received light to different paths and to provide a first signal and a second signal, said first and second signals having an optical difference therebetween sufficient for distinguishing optical signals, an amplifier in optical communication with the optical apparatus for amplifying the first and second signals, and a discrimination device to receive amplified light and to provide output light responsive to the optical difference.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fiber, wherein the output fiber comprises a multimode optical fiber supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
An optical apparatus comprising an optical source for providing output light for providing input signal light can comprise a pump source for pumping a four wave mixing (FWM) process with light pulses (“FWM pump light”); a FWM element in optical communication with said pump source, said FWM element configured for hosting the FWM process to generate, responsive to the FWM pump light, pulses of FWM signal light and FWM idler light having different wavelengths; and a laser or amplifier optical device comprising a gain material for providing optical gain at a gain wavelength via a process of stimulated emission responsive to optical pumping with pump light, said laser or amplifier optical device in optical communication with said optical source and receiving one of the FWM signal light and the FWM idler light as input signal light having the gain wavelength for optically seeding with input signal light the laser or amplifier optical device.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.