Abstract:
Systems and methods can be used for analyzing image data to determine an amount of vibration and/or misalignment in an object under analysis. In some instances, as operating equipment heats up during operation, temperature changes of various portions of the operating equipment leads to changes in dimensions of such portions, leading to misalignment. Multiple sets of data representative of the operating equipment in multiple operating conditions can be used to determine an amount of misalignment due to thermal offsets. Hot and cold temperatures of the equipment can be used to calculate thermal growth of various portions of the equipment, which can be used to determine an amount a misalignment due to thermal offsets. Additionally or alternatively, image data representing the equipment can be used to observe changes in alignment between states.
Abstract:
Systems can include a test and measurement tool configured to generate measurement data, and imaging tool configured to generate image data, and a processor in communication with the imaging tool and the test and measurement tool. The processor can be configured to receive image data from the imaging tool and, if the image data satisfies one or more predetermined conditions, trigger the test and measurement tool to perform one or more corresponding operations. Similarly, the processor can receive measurement data from the test and measurement tool and, if the measurement data satisfies one or more predetermined conditions trigger the imaging tool to perform one or more corresponding operations.
Abstract:
Systems and methods directed toward acoustic analysis can include an acoustic sensor array comprising a plurality of acoustic sensor elements, an electromagnetic imaging tool, a distance measuring tool, and a processor in communication with the acoustic sensor array, the electromagnetic imaging tool, and the distance measuring tool. The processor can be configured to generate acoustic image data based on acoustic signals received from the acoustic sensor array and distance information received from the distance measuring tool. The processor can combine the generated acoustic image data and received electromagnetic image data from the electromagnetic imaging tool to create a display image including acoustic image data and electromagnetic image data. The processor can be configured to correct a parallax error between the electromagnetic image data and the acoustic image data based on the received distance information.
Abstract:
Tools used to detect underlying structures, such as behind the surface of a wall, can include a first sensor, such as an electromagnetic sensor, configured to generate data indicative of the location of the underlying structure. Tools can include an indicator that provides an indication to a user based on the data. Tools can additionally or alternatively include an infrared imaging device for generating infrared image data indicative of the heat pattern of a scene. A display can display the generated infrared image data. Underlying structures may be visible in the heat pattern of the scene. The tool can indicate the presence of an underlying structure feature to an operator via one or both of the display and the indicator.
Abstract:
Systems and methods can be used for analyzing image data to determine an amount of vibration and/or misalignment in an object under analysis. In some instances, as operating equipment heats up during operation, temperature changes of various portions of the operating equipment leads to changes in dimensions of such portions, leading to misalignment. Multiple sets of data representative of the operating equipment in multiple operating conditions can be used to determine an amount of misalignment due to thermal offsets. Hot and cold temperatures of the equipment can be used to calculate thermal growth of various portions of the equipment, which can be used to determine an amount a misalignment due to thermal offsets. Additionally or alternatively, image data representing the equipment can be used to observe changes in alignment between states.
Abstract:
Systems can include a mobile device, an accessory configured to generate data representative of at least one parameter of a device under test, and an isolated test block comprising at least one input for interfacing with the accessory and an output configured to communicate accessory output data. The mobile device can include a display and be configured to receive the accessory output data from the isolated test block and to present a display based at least on received accessory output data. The accessory output data received by the mobile device can be electrically isolated from the accessory to provide protection to a device user and the mobile device.
Abstract:
Systems can include a resistance testing device configured to generate resistance data regarding the insulation resistance of equipment under test and a temperature sensing device configured to generate temperature data regarding the temperature of the equipment under test. The system can include a processor configured to receive the resistance data and the temperature data. Based on the received data, the processor can determine normalized resistance data accounting for temperature effects on the measured resistance. Normalized resistance data can indicate a predicted value for the insulation resistance measurement had the measurement been performed at a reference temperature. Thus, insulation resistance values normalized to a common temperature can be more accurately and meaningfully analyzed and trended over time.
Abstract:
Systems can include a test and measurement tool configured to generate measurement data, and imaging tool configured to generate image data, and a processor in communication with the imaging tool and the test and measurement tool. The processor can be configured to receive image data from the imaging tool and, if the image data satisfies one or more predetermined conditions, trigger the test and measurement tool to perform one or more corresponding operations. Similarly, the processor can receive measurement data from the test and measurement tool and, if the measurement data satisfies one or more predetermined conditions trigger the imaging tool to perform one or more corresponding operations.
Abstract:
Test and measurement systems can include a test and measurement tool configured to generate measurement data representative of at least one parameter of an object under test and an imaging tool configured to generate image data representative of a target scene. The imaging tool can be removably attachable to the test and measurement tool. The test and measurement system can include a communication link that can provide communication between the test and measurement tool and the imaging tool. The communication link can facilitate one or both of communication of image data to the test and measurement tool and measurement data to the imaging tool. Systems can include a display in communication with at least one of the test and measurement tool or the imaging tool for presenting at least one of image data or measurement data to a user.
Abstract:
Acoustic imaging systems can include an acoustic sensing array, an electromagnetic imaging tool, a display, and an audio device. A processor can receive data from the acoustic sensor array and the electromagnetic imaging tool to generate a display image combining acoustic image data and electromagnetic image data. Systems can include an audio device that receives an audio output from the processor and outputs audio feedback signals to a user. The audio feedback signals can represent acoustic signals from an acoustic scene. Systems can provide a display image to a user including acoustic image data, and a user can select an acoustic signal for which to provide a corresponding audio output to an audio device. Audio outputs and display images can change dynamically in response to a change in pointing of the acoustic sensing array, such as by changing a stereo audio output.