Abstract:
A control box includes a housing defining an interior, the housing including a cover and a stiffener, the stiffener removably connected in contact with the cover, the stiffener including an outer frame and at least one cross-member. The control box further includes a heat sink removably connected in contact with the stiffener. The control box further includes a first circuit board disposed within the interior, the first circuit board positioned between the stiffener and the heat sink, and a second circuit board disposed within the interior, the second circuit board positioned between the cover and the stiffener. The cover, stiffener, and heat sink are stacked along a transverse direction.
Abstract:
A control system for an unmanned vehicle (UV) comprises a housing defining an interior, a first circuit board disposed within the interior, and a second circuit board disposed within the interior. The first circuit board includes one or more processing circuits including a first processing system and a second processing system having heterogeneous field programmable architectures. The second circuit board includes a plurality of interface circuits associated with a plurality of vehicle devices of the UV. The second circuit board is in operative communication with the first circuit board and includes an input/output (I/O) interface between the plurality of interface circuits and the first and second processing systems.
Abstract:
A processing system for an unmanned vehicle (UV) such as an unmanned aerial vehicle (UAV) is provided. The processing system comprises a first processing unit of an integrated circuit and a second processing unit of the integrated circuit. The processing system comprises a first operating system provisioned using the first processing unit. The first operating system is configured to execute a first vehicle control process. The processing system comprises a virtualization layer configured using at least the second processing unit, and a second operating system provisioned using the virtualization layer. The second operating system is configured to execute a second vehicle control process.
Abstract:
A method of messaging in a communication system that operates in accordance with a standard protocol limited in the number of uniquely addressable remote terminals by a message frame that sequences the messages into a limited number of time slots includes redefining the message frame into a plurality of major frames. Each major frame includes at least one minor frame occupying a unique time slot to address a unique remote terminal. Messages are sequenced into the at least one minor frame. Each minor frame includes a set of time-division multiplexed messages. Each message in the set includes an address field identifying the address of a remote terminal and an additional message to each major frame encoding an output path. The output path encoded in each major frame and the unique time slot in the minor frame determines which remote terminal is addressed by the message.
Abstract:
A method and apparatus for heat-dissipation in an avionics chassis can include a housing having an outer surface, defining an exterior of the housing, an inner surface, defining an interior of the housing, and a set of walls at least partially separating the exterior of the housing from the interior of the housing, a heat generating component located within the interior of the housing, and a thermal plane thermally coupled to the heat generating component and configured to direct heat away from the heat generating component.
Abstract:
A method of tracking motion of at least one object of a group of moving objects using hyperspectral imaging includes, among other things, obtaining a series of hyperspectral image frames; comparing each frame in the series to a template to determine changes in the image between frames; identifying a group of pixels in each frame associated with the changes; identifying changes as motion of the moving objects; correlating the pixel groups frame to frame to spatially determine at least one parameter of the motion of the objects; and correlating the pixel groups with a spectral reflectance profile associated with the at least one object wherein the track of the at least one object is distinguishable from the tracks of other moving objects.
Abstract:
A method of messaging in a communication system that operates in accordance with a standard protocol limited in the number of uniquely addressable remote terminals by a message frame that sequences the messages into a limited number of time slots includes redefining the message frame into a plurality of major frames. Each major frame includes at least one minor frame occupying a unique time slot to address a unique remote terminal. Messages are sequenced into the at least one minor frame. Each minor frame includes a set of time-division multiplexed messages. Each message in the set includes an address field identifying the address of a remote terminal and an additional message to each major frame encoding an output path. The output path encoded in each major frame and the unique time slot in the minor frame determines which remote terminal is addressed by the message.
Abstract:
A method of tracking motion of at least one object of a group of moving objects using hyperspectral imaging includes, among other things, obtaining a series of hyperspectral image frames; comparing each frame in the series to a template to determine changes in the image between frames; identifying a group of pixels in each frame associated with the changes; identifying changes as motion of the moving objects; correlating the pixel groups frame to frame to spatially determine at least one parameter of the motion of the objects; and correlating the pixel groups with a spectral reflectance profile associated with the at least one object wherein the track of the at least one object is distinguishable from the tracks of other moving objects.
Abstract:
A processing system for an unmanned vehicle (UV) such as an unmanned aerial vehicle (UAV) is provided. The processing system comprises a first processing unit of an integrated circuit and a second processing unit of the integrated circuit. The processing system comprises a first operating system provisioned using the first processing unit. The first operating system is configured to execute a first vehicle control process. The processing system comprises a virtualization layer configured using at least the second processing unit, and a second operating system provisioned using the virtualization layer. The second operating system is configured to execute a second vehicle control process.
Abstract:
A processing system for an unmanned vehicle (UV) such as an unmanned aerial vehicle (UAV) is provided. The processing system comprises a first processing unit of an integrated circuit and a second processing unit of the integrated circuit. The processing system comprises a first operating system provisioned using the first processing unit. The first operating system is configured to execute a first vehicle control process. The processing system comprises a virtualization layer configured using at least the second processing unit, and a second operating system provisioned using the virtualization layer. The second operating system is configured to execute a second vehicle control process.