Abstract:
Various embodiments include a dense abradable coating, a method of reducing rub damage to a turbine engine part by applying the dense abradable coating thereto, and a turbine engine part having the abradable coating thereon. Particular embodiments include a dense abradable coating including a pore-free metallic composite, a high-aluminum containing brittle alloy, and a plurality of hollow abradable particles.
Abstract:
A treatment composition is disclosed including a carrier and a sacrificial oxide-forming material suspended within the carrier. The sacrificial oxide-forming material is selected from the group consisting of tin oxide, magnesium oxide, antimony pentaoxide, and combinations thereof. A treatment process for a gas turbine component including an abradable ceramic coating is disclosed. The process includes contacting the abradable ceramic coating with the treatment composition. The sacrificial oxide-forming material is infused into the abradable ceramic coating to form sacrificial oxide-forming deposits within the abradable ceramic coating. A rejuvenation process is disclosed including contacting the hot gas path surface of a gas turbine component with a rinse composition comprising water and the treatment composition to form the sacrificial oxide-forming deposits within the abradable ceramic coating.
Abstract:
A composition for a reinforced metal matrix coating, and a method of preparing and coating the composition. The composition includes a plurality of sacrificial metallic binder particles that is anodic with respect to a base substrate, and a plurality of hard particles.
Abstract:
A composition for a reinforced metal matrix coating, and a method of preparing and coating the composition. The composition includes a plurality of sacrificial metallic binder particles that is anodic with respect to a base substrate, and a plurality of hard particles.
Abstract:
A method includes applying a material coating on a surface of a machine component using a thermal spray, wherein the material coating is formed from a combination of a hardfacing material and aluminum-containing particles. The method also includes thermally treating the material coating to generate an oxide layer comprising aluminum from the aluminum-containing particles, wherein the oxide layer is configured to reduce oxidation of the hardfacing material.
Abstract:
A method includes applying a material coating to a surface of a machine component, wherein the material coating is formed from a combination of a hardfacing material, aluminum-containing particles, and a braze material. The method also includes thermally treating the material coating at a temperature to generate an oxide layer comprising aluminum from the aluminum-containing particles, wherein the oxide layer is configured to reduce oxidation of the hardfacing material, and the braze material is configured to facilitate binding between the material coating and the surface of the machine component.
Abstract:
A high entropy ceramic (HEC) composition includes at least three different rare earth (RE) oxides and at least one of hafnium dioxide (HfO2) and zirconia oxide (ZrO2). The at least three different rare earth oxides being equimolar fractions. In one aspect, the high entropy ceramic (HEC) composition can be used in a thermal barrier coating.
Abstract:
A braze composition, brazing process, and brazed article are disclosed. The braze composition includes a MCrAlY alloy at a concentration, by weight, of between 50% and 70%, where M is selected from the group consisting of nickel, cobalt, iron, alloys thereof, and combinations thereof, and a nickel-based alloy at a concentration, by weight, of between 30% and 50%. The brazing process includes forming a braze paste, brazing the braze paste to a portion of a component, and shaping the braze paste to form a brazed article. The brazed article includes a component and a braze composition brazed to the component, the braze composition including a MCrAlY alloy at a concentration, by weight, of between 50% and 70%, where M is selected from the group consisting of nickel, cobalt, iron, alloys thereof, and combinations thereof, and a nickel-based alloy at a concentration, by weight, of between 30% and 50%.
Abstract:
A system includes a catalytic reactor configured to mount to a combustor. The catalytic reactor includes a catalyst configured to reduce emissions associated with combustion in the combustor. The catalytic reactor also includes a first and a second sacrificial coating disposed over the catalyst prior to mounting of the catalytic reactor into the combustor, wherein the first and second sacrificial coatings are removable while the catalytic reactor is mounted to the combustor without damaging the catalyst.
Abstract:
Methods and systems for washing a surface, such as a gas turbine surface, are provided. A wash control system includes a storage tank configured to contain a cleaning agent, a plurality of nozzles, and a supply conduit coupled to the storage tank on a first end and the plurality of nozzles on a second end, wherein the wash control system is configured to deliver the cleaning agent from the storage tank and to discharge the cleaning agent through the plurality of nozzles and the cleaning agent includes an ethylene oxide-propylene oxide block copolymer, sodium dodecyl benzene sulphonate, sodium lauryl sulphate, or a combination including at least one of the foregoing.