Abstract:
Examples of a system for generating and compressing magnetized plasma are disclosed. The system comprises a plasma generator with a first closed end and an outlet, and a flux conserving chamber that is in tight fluid communication with the outlet of the plasma generator such that the generated plasma is injected into an inner cavity of the flux conserving chamber. An elongated central axial shaft is also provided such that the central shaft extends through the outlet of the plasma generator into the flux conserver. The end of the central shaft in connected to the flux conserver. A power source that comprises a formation power circuit and a shaft power circuit is provided to provide a formation power pulse to the plasma generator to generate magnetized plasma, and a shaft power pulse to the central axial shaft to generate a toroidal magnetic field into the plasma generator and the flux conserving chamber. The duration of the shaft power pulse is longer than the duration of the formation power pulse to maintain plasma q-profile at a pre-determined range. During plasma compression the shaft power pulse is increased to match the raise of the plasma poloidal field due to the compression and thus maintain the q-profile of the plasma.
Abstract:
Examples of a modular compression chamber for use in a compression system are disclosed. The modular compression chamber comprises a plurality of individual modules and a plurality of fasteners to attach the plurality of modules in an interlocking fashion to form the chamber. The modules have a pre-determined geometry and size to form a compression chamber with a desired geometry and size. The plurality of fasteners keeps each of the individual modules in compression with neighboring modules so that the formed chamber maintains its integrity during operation. The modules can comprise a plurality of pressure wave generators to generate a pressure wave within the chamber. In one embodiment, the pressure wave generators have a pre-determined geometry and size and are configured to interlock with the neighboring generators forming the individual modules. The fasteners are configured to maintain intimate contact between side walls of the adjacent pressure wave generators.
Abstract:
Embodiments of systems and methods for compressing plasma are disclosed in which plasma can be compressed by impact of a projectile on a magnetized plasma in a liquid metal cavity. The projectile can melt in the liquid metal cavity, and liquid metal may be recycled to form new projectiles.
Abstract:
Embodiments of systems and methods for compressing plasma are disclosed in which plasma can be compressed by impact of a projectile on a magnetized plasma in a liquid metal cavity. The projectile can melt in the liquid metal cavity, and liquid metal may be recycled to form new projectiles.
Abstract:
A method and system for stably generating and accelerating magnetized plasma comprises ionizing an injected gas in plasma generator and generating a formation magnetic field to form a magnetized plasma with a closed poloidal field, generating a reverse poloidal field behind the magnetized plasma and having a same field direction as a back edge of the closed poloidal field and having an opposite field direction of the formation magnetic field, and generating a pushing toroidal field that pushes the reverse poloidal field against the closed poloidal field, thereby accelerating the magnetized plasma through a plasma accelerator downstream from the plasma generator. The reverse poloidal field serves to prevent the reconnection of the formation magnetic field and closed poloidal field after the magnetized plasma is formed, which would allow the pushing toroidal field to mix with the closed poloidal field and cause instability and reduced plasma confinement.
Abstract:
Examples of systems for imploding liquid liner are described. The imploding system comprises a vessel and a rotating member positioned within the vessel. The rotating member has a plurality of shaped blades that form a plurality of curved passages that have an inboard opening at an inner surface and an outboard end at an outer surface. The rotating member is at least partially filled with liquid medium. A driver is used to rotate the rotating member such that when the rotating member rotates the liquid medium is forced into the passages forming a liquid liner with an interface curved with respect to an axis of rotation and defining a cavity. The system further comprises an implosion driver that changes the rotational speed of the rotating member such that the liquid liner is imploded inwardly collapsing the cavity. The imploding liquid liner can be used in plasma compression systems.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.
Abstract:
Examples of a system for generating and compressing magnetized plasma are disclosed. The system comprises a plasma generator with a first closed end and an outlet, and a flux conserving chamber that is in tight fluid communication with the outlet of the plasma generator such that the generated plasma is injected into an inner cavity of the flux conserving chamber. An elongated central axial shaft is also provided such that the central shaft extends through the outlet of the plasma generator into the flux conserver. The end of the central shaft in connected to the flux conserver. A power source that comprises a formation power circuit and a shaft power circuit is provided to provide a formation power pulse to the plasma generator to generate magnetized plasma, and a shaft power pulse to the central axial shaft to generate a toroidal magnetic field into the plasma generator and the flux conserving chamber. The duration of the shaft power pulse is longer than the duration of the formation power pulse to maintain plasma q-profile at a pre-determined range. During plasma compression the shaft power pulse is increased to match the raise of the plasma poloidal field due to the compression and thus maintain the q-profile of the plasma.
Abstract:
Examples of system for generating vortex cavity are disclosed. The system comprises a vessel into which a fluid is injected through one or more inlet ports and a fluid circulating system configured to circulate the fluid through the vessel such that the fluid is removed from the vessel through an outlet port and is returned back into the vessel through the one and more inlet ports. A first spinner is mounted at one wall of the vessel while a second spinner is mounted at the opposite wall of the vessel such that the second spinner is at some distance away from the first spinner and it faces the first spinner. When the fluid circulating system starts circulating the fluid within the vessel a vortex cavity is formed that extends between the first and the second spinners so that one end of the vortex cavity sits on the first spinner while the opposite end of the vortex cavity sits on the second spinner.
Abstract:
Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.