Abstract:
A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
Abstract:
A method is provided that involves mounting a transmit block and a receive block in a LIDAR device to provide a relative position between the transmit block and the receive block. The method also involves locating a camera at a given position at which the camera can image light beams emitted by the transmit block and can image the receive block. The method also involves obtaining, using the camera, a first image indicative of light source positions of one or more light sources in the transmit block and a second image indicative of detector positions of one or more detectors in the receive block. The method also involves determining at least one offset based on the first image and the second image. The method also involves adjusting the relative position between the transmit block and the receive block based at least in part on the at least one offset.
Abstract:
Systems and methods are described that relate to a light detection and ranging (LIDAR) device. The LIDAR device includes a fiber laser configured to emit light within a wavelength range, a scanning portion configured to direct the emitted light in a reciprocating manner about a first axis, and a plurality of detectors configured to sense light within the wavelength range. The device additionally includes a controller configured to receive target information, which may be indicative of an object, a position, a location, or an angle range. In response to receiving the target information, the controller may cause the rotational mount to rotate so as to adjust a pointing direction of the LIDAR. The controller is further configured to cause the LIDAR to scan a field-of-view (FOV) of the environment. The controller may determine a three-dimensional (3D) representation of the environment based on data from scanning the FOV.
Abstract:
Methods, devices, and systems that may help improve the dynamic range of a signal receiver. The method includes (i) causing a signal emitter to emit a signal during a first period of time; (ii) receiving, at the signal receiver, a reflected signal during a second period of time, where the received reflected signal corresponds to the emitted signal, and where the second period of time begins after a beginning of the first period of time; and (iii) increasing a signal gain that is applied to the received reflected signal during a third period of time, where the third period of time begins not earlier than a beginning of the second period of time.
Abstract:
In some applications, it may be desirable to position multiple photodetectors at precise locations on a curved focal surface defined by an optical system. To achieve this positioning, the photodetectors may be mounted at desired locations on a flexible substrate that is in a flat configuration. The flexible substrate with mounted photodetectors can then be shaped to substantially conform to the shape of the curved focal surface. This shaping can be accomplished by clamping the flexible substrate between at least two clamping pieces. The curved flexible substrate clamped between the at least two clamping pieces can be positioned relative to the optical system such that the photodetectors are positioned at desired three-dimensional locations on the curved focal surface.
Abstract:
A light detection and ranging (LIDAR) device that scans through a scanning zone while emitting light pulses and receives reflected signals corresponding to the light pulses is disclosed. The LIDAR device scans the scanning zone by directing light toward a rotating mirror to direct the light pulses through the scanning zone. The rotating mirror is driven by a conductive coil in the presence of a magnetic field. The conductive coil is coupled to the rotating mirror and arranged in a plane perpendicular to the axis of rotation of the mirror. The axis of rotation of the mirror is oriented substantially parallel to a reflective surface of the mirror and passes between the reflective surface and the conductive coil.