Asynchronous optimization for sequence training of neural networks

    公开(公告)号:US12073823B2

    公开(公告)日:2024-08-27

    申请号:US18506540

    申请日:2023-11-10

    Applicant: Google LLC

    CPC classification number: G10L15/063 G06N3/045 G10L15/16 G10L15/183

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.

    ASYNCHRONOUS OPTIMIZATION FOR SEQUENCE TRAINING OF NEURAL NETWORKS

    公开(公告)号:US20220108686A1

    公开(公告)日:2022-04-07

    申请号:US17644362

    申请日:2021-12-15

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.

    Asynchronous optimization for sequence training of neural networks

    公开(公告)号:US11227582B2

    公开(公告)日:2022-01-18

    申请号:US17143140

    申请日:2021-01-06

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.

    Object-Centric Learning with Slot Attention

    公开(公告)号:US20210383199A1

    公开(公告)日:2021-12-09

    申请号:US16927018

    申请日:2020-07-13

    Applicant: Google LLC

    Abstract: A method involves receiving a perceptual representation including a plurality of feature vectors, and initializing a plurality of slot vectors represented by a neural network memory unit. Each respective slot vector is configured to represent a corresponding entity in the perceptual representation. The method also involves determining an attention matrix based on a product of the plurality of feature vectors transformed by a key function and the plurality of slot vectors transformed by a query function. Each respective value of a plurality of values along each respective dimension of the attention matrix is normalized with respect to the plurality of values. The method additionally involves determining an update matrix based on the plurality of feature vectors transformed by a value function and the attention matrix, and updating the plurality of slot vectors based on the update matrix by way of the neural network memory unit.

    Neural Networks For Speaker Verification
    17.
    发明申请

    公开(公告)号:US20180315430A1

    公开(公告)日:2018-11-01

    申请号:US15966667

    申请日:2018-04-30

    Applicant: Google LLC

    Abstract: This document generally describes systems, methods, devices, and other techniques related to speaker verification, including (i) training a neural network for a speaker verification model, (ii) enrolling users at a client device, and (iii) verifying identities of users based on characteristics of the users' voices. Some implementations include a computer-implemented method. The method can include receiving, at a computing device, data that characterizes an utterance of a user of the computing device. A speaker representation can be generated, at the computing device, for the utterance using a neural network on the computing device. The neural network can be trained based on a plurality of training samples that each: (i) include data that characterizes a first utterance and data that characterizes one or more second utterances, and (ii) are labeled as a matching speakers sample or a non-matching speakers sample.

    Systems and Methods for Improved Video Understanding

    公开(公告)号:US20240428586A1

    公开(公告)日:2024-12-26

    申请号:US18827088

    申请日:2024-09-06

    Applicant: Google LLC

    Abstract: A computer-implemented method for classifying video data with improved accuracy includes obtaining, by a computing system comprising one or more computing devices, video data comprising a plurality of video frames; extracting, by the computing system, a plurality of spatiotemporal representations from the video data, the plurality of spatiotemporal representations comprising a representation of spatiotemporal information in the video data; providing, by the computing system, the plurality of spatiotemporal representations as input to a video understanding model, the video understanding model comprising a video transformer encoder model; and receiving, by the computing system, a classification output from the video understanding model.

    Asynchronous optimization for sequence training of neural networks

    公开(公告)号:US11854534B1

    公开(公告)日:2023-12-26

    申请号:US18069035

    申请日:2022-12-20

    Applicant: Google LLC

    CPC classification number: G10L15/063 G06N3/045 G10L15/06 G10L15/183

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining, by a first sequence-training speech model, a first batch of training frames that represent speech features of first training utterances; obtaining, by the first sequence-training speech model, one or more first neural network parameters; determining, by the first sequence-training speech model, one or more optimized first neural network parameters based on (i) the first batch of training frames and (ii) the one or more first neural network parameters; obtaining, by a second sequence-training speech model, a second batch of training frames that represent speech features of second training utterances; obtaining one or more second neural network parameters; and determining, by the second sequence-training speech model, one or more optimized second neural network parameters based on (i) the second batch of training frames and (ii) the one or more second neural network parameters.

    Neural networks for speaker verification

    公开(公告)号:US11107478B2

    公开(公告)日:2021-08-31

    申请号:US16752007

    申请日:2020-01-24

    Applicant: Google LLC

    Abstract: This document generally describes systems, methods, devices, and other techniques related to speaker verification, including (i) training a neural network for a speaker verification model, (ii) enrolling users at a client device, and (iii) verifying identities of users based on characteristics of the users' voices. Some implementations include a computer-implemented method. The method can include receiving, at a computing device, data that characterizes an utterance of a user of the computing device. A speaker representation can be generated, at the computing device, for the utterance using a neural network on the computing device. The neural network can be trained based on a plurality of training samples that each: (i) include data that characterizes a first utterance and data that characterizes one or more second utterances, and (ii) are labeled as a matching speakers sample or a non-matching speakers sample.

Patent Agency Ranking