Abstract:
Process and reaction system for the preparation of methanol comprising two reaction units, wherein a first unit is operated on a mixture of fresh synthesis gas and unconverted synthesis gas and a second unit solely with unconverted synthesis gas.
Abstract:
The invention relates to a chemical reactor and reformer tubes for reforming a first feed stream comprising a hydrocarbon gas and steam. The chemical reactor comprises a shell with a heat source and one or more reformer tubes. The reformer tube is arranged to house catalyst material and is arranged to being heated by the heat source. The reformer tube comprises a first inlet for feeding said first feed stream into a first reforming reaction zone of the reformer tube, and a feed conduct arranged to allow a second feed stream into a second reforming reaction zone of the reformer tube. The second reforming reaction zone is positioned downstream of the first reforming reaction zone. The feed conduct is configured so that the second feed stream is only in contact with catalyst material in the second reforming reaction zone. The invention also relates to a process of producing CO rich synthesis gas at low S/C conditions.
Abstract:
A process for producing an ammonia synthesis gas, said process including the steps of: reforming a hydrocarbon feed in a reforming step thereby obtaining a synthesis gas comprising CH4, CO, CO2, H2 and H2O; and shifting said synthesis gas in a high temperature shift step over a promoted zinc-aluminum oxide based high temperature shift catalyst, wherein the steam/carbon ratio in the reforming step is less than 2.6.
Abstract:
A heat exchanger has a pass baffle which is formed as an enclosure with two openings, one opening for connection to a shell-side fluid opening and one opening for passing heat exchanger tubes.
Abstract:
A process for producing an ammonia synthesis gas, said process comprising the steps of: —Reforming a hydrocarbon feed in a reforming step thereby obtaining a synthesis gas comprising CH4, CO, CO2, H2 and H2O, —Shifting the synthesis gas in one in or more shift steps in series, —Optionally wash the synthesis gas leaving the shift section with water, —Sending the process condensate originating from cooling and washing the synthesis gas leaving the shift section to a process condensate stripper wherein the dissolved shift byproducts and dissolved gases are stripped out of the process condensate using steam resulting in a steam stream containing more than 99% of the dissolved methanol in process condensate. —Adding all or part of said steam stream from the process condensate stripper to the synthesis gas downstream the reforming step, prior to the last shift step, wherein —The steam/carbon ratio in the reforming step and the shift step is less than 2.6.
Abstract:
The invention provides a process for the production of purified dimethylether (DME). Methanol is dehydrated to provide a first DME-containing product. The first DME-containing product is purified in a two-stage process. The invention also provides an apparatus arranged to carry out said process.
Abstract:
The present invention relates to a process for heating an ATR or PDX comprising the steps of heating a process stream by at least one heating means, admitting the heated process stream to an ATR or PDX reactor through a main burner, and heating the ATR or PDX reactor to or above autoignition temperature of the process stream via the heated process stream.
Abstract:
The invention relates to a process for the production of synthesis gas by the use of autothermal reforming or catalytic partial oxidation in which, after removal of water, effluent gas from the ATR or CPO is recycled to the feed of the ATR or CPO.
Abstract:
The invention relates to a process for the production of synthesis gas by the use of autothermal reforming or catalytic partial oxidation in which, after removal of water, effluent gas from the ATR or CPO is recycled to the feed of the ATR or CPO.
Abstract:
The invention provides a process for the production of purified dimethylether (DME). Methanol is dehydrated to provide a first DME-containing product. The first DME-containing product is purified in a two-stage process. The invention also provides an apparatus arranged to carry out said process.