Abstract:
Example implementations relate to concurrent alternating-current and direct-current. In one example, a device comprises a power module connected to a first power outlet, the power module connected to a second power outlet, and a controller to the power module to concurrently provide alternating-current (AC) power to the first power outlet and direct-current (DC) power to the second power outlet by switching a transistor including switching circuitry in response to an absence of AC input power to the device.
Abstract:
According to an example, a battery is charged using a charge voltage based on a present state of charge of the battery and a present ambient temperature of the battery. Additionally, the charge voltage may be based on the present state of charge of the battery, the present ambient temperature of the battery, and an age of the battery. The charge voltage may be retrieved from a lookup table that includes a plurality of reference charge voltage values at which to charge the battery for different ambient temperatures, different states of charge, or different ages of the battery.
Abstract:
In one example, a system for bypass switch control includes a controller coupled to a number of backup power modules and to a number of bypass switches that correspond to each of the number of backup power modules, wherein the controller activates a bypass switch when a corresponding backup power module is deactivated.
Abstract:
An uninterruptible power supply (UPS) includes a first battery set and a second battery set. The UPS includes a charging circuit to charge the battery sets using alternating current (AC) power. The UPS includes a slot receptive to insertion of different types of output modules that each include an inverter to convert direct current (DC) power from the first and second battery sets, including a first type that connects the first and second battery sets in parallel and a second type that connects the battery first and second sets in series.
Abstract:
A system for regulating voltage and current capability for a battery is described herein. The system includes at least two parallel battery strings to power a system load, where each battery string acts independently of another battery string. The system also includes a current sensor to determine an individual discharging current through each battery string in a circuit. The system also includes a switch to power on a particular battery string to support the system load by discharging current.
Abstract:
A system in accordance with an example includes a first load and a second load. The first load includes a first power supply connected to a first uninterruptible power supply (UPS). The second load includes a second power supply connected to a second UPS, where the first UPS is connected to the second UPS. The first power supply is to deliver power to the first load and to the second load when power to the second load is disabled, and the second power supply is to deliver power to the second load and to the first load when power to the first load is disabled.
Abstract:
Described are examples of back-up power apparatuses and systems including such back-up power apparatuses. An example may include a battery module, and a back-up power control module to determine a back-up power demand of a host device and selectively enable an output of power from the battery module to the host device if the battery module has a power capacity greater than the back-up power demand.
Abstract:
In one example, a system for bypass switch control includes a controller coupled to a number of backup power modules and to a number of bypass switches that correspond to each of the number of backup power modules, wherein the controller activates a bypass switch when a corresponding backup power module is deactivated.
Abstract:
In one example, a system for parallel output of backup power modules includes a first backup power module coupled to an input and a first output of an enclosure, a second backup power module coupled to the input and a second output of the enclosure, wherein the second backup power module is coupled in parallel with the first backup power module, and a switch coupling the first backup power module and the first output of the enclosure to the second output of the enclosure.
Abstract:
Examples disclosed herein involve backup power management. In an example, an amount of backup power to power a load bank is estimated, a set of power sources are selected from a plurality of power sources based on respective states of charge of the plurality of power sources and the estimated amount of backup power, and the selected set of power sources are placed in circuit to provide backup power to the load bank via the selected set of power sources.