Abstract:
An apparatus and a method for producing woodfuel briquettes, pellets, compounds, composites, agglomerates, or granulates as source material for subsequent processing in injection molding or extrusion processes, includes a pressing screw with screw spirals, which rotate around a longitudinal axis and which are arranged inside a screw shell. The feed material is conveyed to the pressing screw via a feed chute located at an input side. At the end of the pressing screw, processing tools are arranged, to which the feed material is conveyed by the rotating screw spirals. In the area of the processing tools, the residual moisture in the feed material evaporates due to the heat generated during the processing procedure, and is vented as a steam flow from the apparatus through the screw shell. In order to prevent the steam flow from carrying away part of the feed material, the apparatus includes an expansion chamber, through which the escaping steam flow is channeled, and the flow-through cross section of which is such that it causes the steam flow to decelerate. As a result of the deceleration of the steam flow in the expansion chamber, the particles of the feed material that were carried off by the steam flow can be returned to the feed material.
Abstract:
A device for comminuting feedstock having a rotor, rotating within a housing around an axis, with rotor tools lying within the outer circumferential region on a circumferential ring and a stator, associated with the rotor, with stator tools arranged concentrically in the outer circumferential region and forming a comminuting surface, whereby the rotor tools and the stator tools lie opposite at a distance with the formation of a working gap and the stator tools are formed by segments, which to form the comminuting surface rest on the stator with their rear side and lie with their long sides against one another. The segments are attached to the stator in each case with their first short side and second short side by a positive fit, whereby the stator has a clamping element, which works together with the first short side and/or second short side to clamp the segments against the stator.
Abstract:
A device for comminuting bulk charge stock with a housing surrounding a rotational axis. The housing has a first front wall, a second front wall plane parallel at an axial distance and a shell wall connecting the first front wall and second front wall on the circumferential side, which together form a comminuting chamber. A comminuting system rotating about the rotational axis is arranged in the comminuting chamber, which comminuting system has first comminuting tools and second comminuting tools interacting therewith, which form a concentric comminuting zone for charge stock. In order to cool the comminuting zone effectively and economically, a cooling channel is provided, which surrounds the shell wall outside in the plane of the comminuting chamber, wherein the cooling channel has an entry opening for charging with cooling gas and an exit opening for the discharge of the cooling gas.
Abstract:
A device for mixing, grinding, drying, deagglomeration, crushing, or coating of feedstock with a rotor is provided, rotating around an axis within a housing, and a stator, fixed relative to the housing, encompassing the rotor with maintenance of a radial working gap. The rotor has rotor tools, which are distributed over its outer surface and whose active edges for crushing the feedstock work together with the stator tools on the inner circumference of the stator. In this regard, the feedstock is supplied in the carrier gas stream to the working gap. For effective processing of the feedstock, it is proposed according to the invention that in the outer surface of the rotor a plurality of indentations is introduced, whereby areas between two adjacent indentations form webs, which form the active edges of the rotor tools.
Abstract:
A device for comminuting bulk charge stock with a housing surrounding a rotational axis. The housing has a first front wall, a second front wall plane parallel at an axial distance and a shell wall connecting the first front wall and second front wall on the circumferential side, which together form a comminuting chamber. A comminuting system rotating about the rotational axis is arranged in the comminuting chamber, which comminuting system has first comminuting tools and second comminuting tools interacting therewith, which form a concentric comminuting zone for charge stock. In order to cool the comminuting zone effectively and economically, a cooling channel is provided, which surrounds the shell wall outside in the plane of the comminuting chamber, wherein the cooling channel has an entry opening for charging with cooling gas and an exit opening for the discharge of the cooling gas.
Abstract:
A device for processing feedstock, includes a housing surrounding a processing chamber in which a rotational rotor having processing tools and mounted on a drive shaft is disposed around an axis. The feedstock is fed to the processing chamber via a material inlet and removed from the device via a material outlet. To facilitate assembly and disassembly of the device and to retool, maintain and repair or clean the device, it is provided according to the invention that the housing includes a first end wall, a material element in the shape of a hollow cylinder or hollow truncated cone, and a second end wall which are detachably connected to each other to form the processing chamber. The connection can be made by axially acting clamps, which clamp the first end wall against the second end wall by clamping the casing element.
Abstract:
An apparatus for comminuting large pieces of cuttable material, particularly bales of rubber, is provided. The apparatus includes a first comminuting stage for carrying out a pre-comminuting, and a second comminuting stage for carrying out a fine comminuting, whereby the second comminuting stage includes a comminuting system that rotates around an axis of rotation, to which the material is conveyed via a supply channel. The first comminuting stage is integrated in the supply channel to the second comminuting stage. In this way, a largely even feeding of material to the second comminuting stage can be achieved so that comparatively low machine performances are sufficient and the performance capacity of the second comminuting stage can be better utilized.
Abstract:
An apparatus and a tool for chipping material are provided. The apparatus includes chipping tools arranged relative to one another inside a housing, whereby the chipping tools are constructed planiformly, and are arranged on carrier elements along a drum-shaped, disk-shaped, or ring-shaped chipping path. The chipping tools rotate relative to one another by rotating about an axis of rotation, and are each divided by a division line based on their thickness into a core area, which faces the carrier element, and a utilization area, which is positioned opposite of the chipping tools. The chipping tools have at least one bore, formed perpendicular to the division line, the bore extends across the utilization area and ends at the division line between the core area and the utilization area. In this way, an automatic indication of a critical state of attrition is accomplished, when from a static viewpoint damage to or destruction of the chipping tool as a result of mechanical stress during the operation of the apparatus can be expected.
Abstract:
A chipping apparatus includes a housing arranged about an axis of rotation and a chipping system within the housing rotating in a predefined direction about an axis of rotation. The chipping system has chipping tools that form a circular or ring-shaped chipping zone. The housing is divided into the sectors I, II, III and IV in the direction of rotation, with a material outlet being arranged in sector I. The axis of rotation of the chipping system is arranged eccentrically, with respect to a central axis of the housing, in the region of sector I or II. In this way, a uniformly widening flow channel is produced between the chipping tools and the housing, even when the housing is circular in cross-section. The constant volume increase in the flow channel toward the material outlet prevents an increasing material density, which can cause blockages in the material flow.
Abstract:
An apparatus and a method for producing woodfuel briquettes, pellets, compounds, composites, agglomerates, or granulates as source material for subsequent processing in injection molding or extrusion processes, includes a pressing screw with screw spirals, which rotate around a longitudinal axis and which are arranged inside a screw shell. The feed material is conveyed to the pressing screw via a feed chute located at an input side. At the end of the pressing screw, processing tools are arranged, to which the feed material is conveyed by the rotating screw spirals. In the area of the processing tools, the residual moisture in the feed material evaporates due to the heat generated during the processing procedure, and is vented as a steam flow from the apparatus through the screw shell. In order to prevent the steam flow from carrying away part of the feed material, the apparatus includes an expansion chamber, through which the escaping steam flow is channeled, and the flow-through cross section of which is such that it causes the steam flow to decelerate. As a result of the deceleration of the steam flow in the expansion chamber, the particles of the feed material that were carried off by the steam flow can be returned to the feed material.