Abstract:
A crystalline Fe-based alloy powder composed of Fe-based alloy particles containing, within a structure thereof, nanocrystal grains having an average grain size of 30 nm or less, and in which d50, which is a particle diameter corresponding to a cumulative frequency of 50% by volume, is from 3.5 μm to 35.0 μm in a cumulative distribution curve that is obtained by laser diffractometry and that shows the relationship between the particle diameter and the cumulative frequency from the small particle diameter side, and a ratio of Fe-based alloy particles having a particle diameter of 2 μm or less to the total of the Fe-based alloy particles, which is determined by laser diffractometry, is from 0% by volume to 8% by volume.
Abstract:
The invention provides a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. The invention is directed to a method for manufacturing a powder magnetic core with a metallic soft magnetic material powder, the method including: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.
Abstract:
A method of producing an atomized powder includes: an atomizing step of forming magnetic alloy particles from a molten metal by an atomizing method, to obtain a slurry in which the magnetic alloy particles are dispersed in an aqueous dispersion medium; a slurry concentration step of causing magnetic separation means to separate the magnetic alloy particles from the slurry to form a concentrated slurry having the magnetic alloy particles of more than 80% by mass, the magnetic separation means using a rotary drum including a magnetic circuit part fixedly disposed at a position where at least a part of the magnetic circuit part is immersed in the slurry and an outer sleeve capable of rotating outside the magnetic circuit part; and a drying step of causing drying means using an air flow dryer to dry the concentrated slurry to form a magnetic alloy powder.
Abstract:
Provided are: a metal powder core having a configuration suitable for core loss reduction and strength improvement; a coil component employing this; and a fabrication method for metal powder core. The metal powder core is obtained by dispersing Cu powder among soft magnetic material powder comprising pulverized powder of Fe-based soft magnetic alloy and atomized powder of Fe-based soft magnetic alloy and then by performing compaction. The fabrication method for metal powder core includes: a mixing step of mixing together soft magnetic material powder containing thin-leaf shaped pulverized powder of Fe-based soft magnetic alloy and atomized powder of Fe-based soft magnetic alloy, Cu powder, and a binder and thereby obtaining a mixture; a forming step of performing pressure forming on the mixture obtained at the mixing step; and a heat treatment step of annealing a formed article obtained at the forming step.
Abstract:
A method for manufacturing a powder magnetic core using a soft magnetic material powder, wherein the method has: a first step of mixing the soft magnetic material powder with a binder, a second step of subjecting a mixture obtained through the first step to pressure forming, and a third step of subjecting a formed body obtained through the second step to heat treatment. The soft magnetic material powder is an Fe—Cr—Al based alloy powder comprising Fe, Cr and Al. An oxide layer is formed on a surface of the soft magnetic material powder by the heat treatment. The oxide layer has a higher ratio by mass of Al to the sum of Fe, Cr and Al than an alloy phase inside the powder.
Abstract:
The invention provides a powder magnetic core and a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. A method for manufacturing a powder magnetic core with a metallic soft magnetic material powder includes: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.
Abstract:
In a metal powder core constructed from soft magnetic material powder and a coil component employing this, a configuration suitable for reduction of a core loss is provided. The metal powder core constructed from soft magnetic material powder is characterized in that Cu is dispersed among the soft magnetic material powder. It is characterized in that, preferably, the soft magnetic material powder is pulverized powder of soft magnetic alloy ribbon and that Cu is dispersed among the pulverized powder of soft magnetic alloy ribbon. Further, it is characterized in that, preferably, the soft magnetic alloy ribbon is a Fe-based nano crystal alloy ribbon or a Fe-based alloy ribbon showing a Fe-based nano crystalline structure and that the pulverized powder has a nano crystalline structure.
Abstract:
A magnetic core includes alloy phases 20 each made of Fe-based soft magnetic alloy grains including M1 (wherein M1 represents both elements of Al and Cr), Si, and R (wherein R represents at least one element selected from the group consisting of Y, Zr, Nb, La, Hf and Ta), and has a structure in which the alloy phases 20 are connected to each other through a grain boundary phase 30. In the grain boundary phase 30, an oxide region is produced. The oxide region includes Fe, M1, Si and R and further includes Al in a larger proportion by mass than the alloy phases 20.
Abstract:
Provided are: a metal powder core having a configuration suitable for core loss reduction and strength improvement; a coil component employing this; and a fabrication method for metal powder core. The metal powder core is obtained by dispersing Cu powder among soft magnetic material powder comprising pulverized powder of Fe-based soft magnetic alloy and atomized powder of Fe-based soft magnetic alloy and then by performing compaction. The fabrication method for metal powder core includes: a mixing step of mixing together soft magnetic material powder containing thin-leaf shaped pulverized powder of Fe-based soft magnetic alloy and atomized powder of Fe-based soft magnetic alloy, Cu powder, and a binder and thereby obtaining a mixture; a forming step of performing pressure forming on the mixture obtained at the mixing step; and a heat treatment step of annealing a formed article obtained at the forming step.
Abstract:
A magnetic core has a structure in which Fe-based soft magnetic alloy particles are connected via a grain boundary. The Fe-based soft magnetic alloy particles contain Al, Cr and Si. An oxide layer containing at least Fe, Al, Cr and Si is formed at the grain boundary that connects the neighboring Fe-based soft magnetic alloy particles. The oxide layer contains an amount of Al larger than that in Fe-based soft magnetic alloy particles, and includes a first region in which the ratio of Al is higher than the ratio of each of Fe, Cr and Si to the sum of Fe, Cr, Al and Si, and a second region in which the ratio of Fe is higher than the ratio of each of Al, Cr and Si to the sum of Fe, Cr, Al and Si. The first region is on the Fe-based soft magnetic alloy particle side.