Abstract:
A liquid crystal display according to exemplary embodiments of the present invention is provided in which an additional storage capacitor is formed to a subpixel electrode connected to the dividing switching element, thereby increasing the total storage capacitance. Due to the additional storage capacitor, the kickback voltage difference between two subpixels that may be generated by the additional dividing switching element is eliminated such that the display quality deterioration has been improved by preventing the kickback voltage difference between the two subpixels.
Abstract:
Disclosed herein are various methods of forming copper-based conductive structures on semiconductor devices, such as transistors. In one example, the method involves performing a first etching process through a patterned metal hard mask layer to define an opening in a layer of insulating material, performing a second etching process through the opening in the layer of insulating material that exposes a portion of an underlying copper-containing structure, performing a wet etching process to remove the patterned metal hard mask layer, performing a selective metal deposition process through the opening in the layer of insulating material to selectively form a metal region on the copper-containing structure and, after forming the metal region, forming a copper-containing structure in the opening above the metal region.
Abstract:
A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate, forming a first transition metal layer in the recess on corner portions of the recess, and forming a second transition metal layer in the recess over the first transition metal layer to line the recess. The method further includes filling the recess with a fill layer and annealing the substrate so that the first transition metal layer and the second transition metal layer form an alloy portion proximate the corner portions during the annealing, the alloy portion having a reduced wettability for a material of the fill layer than the second transition metal. Additionally, the method includes polishing the substrate to remove portions of the fill layer extending above the recess.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a PFET trench in a PFET region and an NFET trench in an NFET region of an interlayer dielectric material on a semiconductor surface. The NFET trench is partially filled with an N-type work function metal layer to define an inner cavity. The PFET trench and the inner cavity in the NFET trench are partially filled with a P-type work function metal layer to define a central void in each trench. In the method, the central voids are filled with a metal fill to form metal gate structures. A single recessing process is then performed to recess portions of each metal gate structure within each trench to form a recess in each trench above the respective metal gate structure.
Abstract:
A flat panel display apparatus includes a substrate; a display unit which is formed on the substrate and displays an image; a metal sheet which faces towards the substrate; a sealant which fills the entire free space between the substrate and the metal sheet and seals the space between the substrate and the metal sheet; and a polymer layer which is disposed on a surface of the metal sheet and has a lower thermal expansion coefficient than the metal sheet. An organic light-emitting display (OLED) apparatus including a sealant which fills an entire space between a substrate and a metal sheet is also disclosed.
Abstract:
An encapsulation sheet, a flat panel display device, and a method of manufacturing a flat panel display device are disclosed. The method includes: forming a getter on a first sheet; forming a sealant having a space corresponding to the shape of the getter on a second sheet; forming an encapsulation sheet by folding the first sheet and the second sheet to enter the getter into the space; and attaching the encapsulation sheet on a substrate on which a display unit is formed. When the flat panel display device is manufactured using the above method, the folded sealant and the getter are simultaneously mounted on the substrate, and thus, a complicated conventional process of mounting the getter in a vacuum state is unnecessary.
Abstract:
A unit pixel of an image sensor and a photo detector are disclosed. The photo detector of the present invention can include: a light-absorbing part configured to absorb light by being formed in a floated structure; an oxide film having one surface thereof being in contact with the light-absorbing part; a source being in contact with one side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; a drain facing the source so as to be in contact with the other side of the other surface of the oxide film and separated from the light-absorbing part with the oxide film therebetween; and a channel formed between the source and the drain and configured to form flow of an electric current between the source and drain.
Abstract:
An organic light emitting diode (OLED) display includes a substrate, an OLED on the substrate, and an encapsulation layer on the substrate with the OLED therebetween. The encapsulation layer includes a plurality of metal layers. Two of the plurality of metal layers are directly attached to each other.
Abstract:
In a thin film transistor, first and second thin film transistors are connected to an Nth gate line and an Mth data line, and first and second sub pixel electrodes are connected to the first and second thin film transistors, respectively. A third thin film transistor includes a gate electrode connected to an (N+1)th gate line, a semiconductor layer overlapping with the gate electrode, a source electrode connected to the second sub pixel electrode and partially overlapping with the gate electrode, and a drain electrode facing the source electrode. A first auxiliary electrode is connected to the drain electrode and arranged on the same layer as the first and second sub pixel electrodes. An opposite electrode is arranged on the same layer as the gate line and at least partially overlaps with the first auxiliary electrode with at least one insulating layer disposed therebetween.
Abstract:
A method of fabricating liquid crystal display (LCD) that may improves picture quality by removing uncured monomers in a liquid crystal panel and an LCD obtained by the method are provided. The method includes forming a liquid crystal layer between a first substrate and a second substrate by injecting liquid crystal molecules and monomers between the first substrate and the second substrate, the first and second substrates facing each other; applying an electric field to the liquid crystal layer; performing a primary curing operation on the monomers; and removing the electric field and performing a secondary curing operation on remaining monomers, wherein at least one of the primary curing operation and the secondary curing operation includes maintaining a temperature of the liquid crystal layer below a phase transition temperature of the liquid crystal molecules.