Abstract:
The present invention relates to a process for adding an organic compound to a porous solid wherein, in an open or closed chamber, a first batch of porous solid rich in an organic compound is brought together with a second batch of porous solid low in said organic compound. The step of bringing the porous solids together is carried out under temperature, pressure and time conditions such that a fraction of said organic compound is transferred gaseously from the first batch of porous solid to the second batch of porous solid.
Abstract:
The invention relates to a process for adding an organic compound to a porous solid wherein the porous solid and the organic compound in the liquid state are brought together simultaneously, without physical contact between the solid and the organic compound in the liquid state, at a temperature below the boiling point of the organic compound and under pressure and time conditions such that a fraction of said organic compound is transferred gaseously to the porous solid.
Abstract:
The invention concerns a CLC process, and its installation, producing high purity dinitrogen, comprising:(a) the combustion of a hydrocarbon feed by reduction of a redox active mass brought into contact with the feed, (b) a first step for oxidation of the reduced active mass (25) obtained from step (a) in contact with a fraction of a depleted air stream (21b), in order to produce a high purity stream of dinitrogen (28) and a stream of partially re-oxidized active mass (26); (c) a second step for oxidation of the stream of active mass (26) in contact with air (20) in order to produce a stream of depleted air and a stream of re-oxidized active mass (24) for use in step (a); (d) dividing the stream of depleted air obtained at the end of step (c) in order to form the fraction of depleted air used in step (b) and a fraction complementary to the depleted air extracted from the CLC.
Abstract:
A process for the hydrogenation of a polyunsaturated compound contained in a hydrocarbon feedstock in the presence of a catalyst comprising a porous support and an active phase comprising a group VIII metal, said catalyst being prepared according to the following steps: a) an organic compound containing oxygen and/or nitrogen, but not comprising sulfur, is added to the porous support; b) said porous support is brought into contact with a solution containing a salt of a precursor of the active phase; c) the porous support obtained at the end of step b) is dried; characterized in that step a) is carried out before or after steps b) and c) and is carried out by bringing together said porous support and said organic compound under conditions of temperature, pressure and duration such that a fraction of said organic compound is transferred in the gaseous state to the porous support.
Abstract:
The invention relates to a catalyst comprising a support based on alumina or silica or silica-alumina, at least one group VIII element, at least one group VIB element and at least one organic compound of formula (I) in which R1 is a hydrocarbon-based radical comprising from 1 to 12 carbon atoms, R2 and R3 are chosen from a hydrogen atom and a hydrocarbon-based radical comprising from 1 to 12 carbon atoms, X is chosen from an oxygen atom or a sulfur atom except when R2 and R3 represent a hydrogen atom, in which case X is an oxygen atom, Y is chosen from a hydrogen atom, a hydrocarbon-based radical comprising from 1 to 12 carbon atoms or a unit —C(O)R4, R4 being chosen from a hydrogen atom and a hydrocarbon-based radical comprising from 1 to 12 carbon atoms.
Abstract:
The invention relates to a process and to a unit for chemical looping oxidation-reduction combustion of a hydrocarbon feed, wherein heat exchanges are controlled through a level variation of a dense fluidized bed of active mass particles in an external heat exchanger (E1, E2), positioned on a transport line carrying particles circulating between a reduction zone (210) and an oxidation zone (200) for the particles in the chemical loop. The bed level variation is allowed through controlled application of a pressure drop on a fluidization gas outlet in the heat exchanger, said pressure drop being compensated by the level variation of an active mass particle bed in a reservoir zone provided on the particle circuit in the chemical loop.
Abstract:
The invention relates to a method and to a plant for chemical looping oxidation-reduction combustion (CLC) of a gaseous hydrocarbon feed, for example natural gas essentially containing methane. According to the invention, catalytic reforming of the feed is performed within the reduction zone where combustion of the feed is conducted on contact with an oxidation-reduction active mass in form of particles. The reforming catalyst comes in form of untransported fluidized particles within the reduction zone. The catalyst thus confined in the reduction zone does not circulate in the CLC loop.
Abstract:
Process for the elimination of mercury contained in a heavy hydrocarbon-containing feedstock downstream of a main fractionation unit, a process in which: a) the non-elemental mercury contained in the compounds of said feedstock is transformed to elemental mercury; b) a fractionation of said hydrocarbon-containing feedstock is carried out in a fractionation unit in order to produce a top effluent comprising elemental mercury; c) the top effluent obtained in stage b) is brought into contact with a mercury capture material contained in a unit for the capture of mercury, in order to obtain an effluent that is at least partially de-mercurized.
Abstract:
Capturing at least one heavy metal, from mercury and arsenic, contained in a moist gas comprising water vapour, by the following steps: a) heating the moist gas by heat exchange with a compressed heat transfer fluid obtained in step e) in order to obtain a condensed heat transfer fluid and a gas reheated to a temperature Tc; b) bringing the reheated gas into contact with a heavy metal capture mass in order to obtain a gas depleted in heavy metal; c) decompressing the cooled heat transfer fluid; d) cooling the gas depleted in heavy metal by heat exchange with the heat transfer fluid produced in step c) in order to obtain a cooled gas at a temperature Tf, the heat transfer fluid being vaporized; e) compressing the vaporized heat transfer fluid in a manner such as to obtain a compressed heat transfer fluid, the compressed heat transfer fluid being recycled.
Abstract:
The invention relates to a method and to a device for chemical looping combustion CLC of a solid hydrocarbon feed wherein it is proposed to inject the solid hydrocarbon feed so as to limit any occurrence of sticking of the feed to the walls of the injection device. The solid feed is fed into a conveying zone operating under fluidized bed conditions and opening into a combustion reactor. A fluidization gas is injected into this conveying zone while controlling the flow of gas in such a way that the superficial velocity of the gas in the conveying zone is higher than the terminal velocity of the solid hydrocarbon feed particles and the terminal velocity of solid particles present in the combustion reactor, and while controlling the fluidization gas temperature in such a way that the temperature in the conveying zone is less than or equal to 500° C.