Abstract:
A control channel supporting traffic control in epochs is divided into two control subchannels each being less than or equal to about a half epoch in duration and occurring serially in time. Slot allocation data may be transmitted and received independently over the subchannels. One subchannel may be used for transmitting forward slot allocation data and the other subchannel may be used for transmitting reverse slot allocation data. The channel split into two subchannels may be a paging channel. The forward and reverse slot allocation data may be transmitted between a base station processor and field unit. Forward and reverse traffic data may be staggered by at least about half an epoch. Transmission of traffic data happens within about two epochs after the assignments.
Abstract:
A control channel supporting traffic control in epochs is divided into two control subchannels each being less than or equal to about a half epoch in duration and occurring serially in time. Slot allocation data may be transmitted and received independently over the subchannels. One subchannel may be used for transmitting forward slot allocation data and the other subchannel may be used for transmitting reverse slot allocation data. The channel split into two subchannels may be a paging channel. The forward and reverse slot allocation data may be transmitted between a base station processor and field unit. Forward and reverse traffic data may be staggered by at least about half an epoch. Transmission of traffic data happens within about two epochs after the assignments.
Abstract:
Methods and apparatuses are disclosed regarding data rate and resource allocation decisions which are made for a communications channel, such as a wireless reverse connection. The wireless reverse connection may be between stations. One of the stations may be a base station and another station may be a field unit. The field unit may transmit data to a base station at a first data rate, based on a first resource allocation. Also, the field unit may transmit, to the base station, an indication, such as a digital data word, that the field unit has the capability to support the transmission of uplink data at a second data rate. The base station may transmit a second resource allocation to the field unit. After receiving the second resource allocation, the field unit may transmit additional uplink data to the base station at the second data rate based on the second resource allocation.
Abstract:
A technique for encoding digital communication signals. Data symbols are augmented in pilot symbols inserted at predetermined positions. The pilot augmented sequence is then fed to a deterministic error correction block encoder, such as a turbo product coder, to output a coded sequence. The symbols in the error correction encoded sequence are then rearranged to ensure that the output symbols derived from input pilot symbols are located at regular, predetermined positions. As a result, channel encoding schemes can more easily be used which benefits from power of two length block sizes.