Abstract:
Particular embodiments described herein provide for a wearable electronic device with a biometric sensor and logic. At least a portion of the logic is implemented in hardware. The logic is configured to receive input data indicative of biometric input and attempt to authenticate the input data based, at least in part, on at least one biometric credential of an authorized user. The logic is configured to establish a wireless connection to a smart device, determine whether the smart device is included in a trust group of one or more smart devices, and send a communication to unlock the smart device when the input data is successfully authenticated and when the trust group includes the smart device.
Abstract:
Particular embodiments described herein provide for a wearable electronic device with a biometric sensor and logic. At least a portion of the logic is implemented in hardware. The logic is configured to receive input data indicative of biometric input and attempt to authenticate the input data based, at least in part, on at least one biometric credential of an authorized user. The logic is configured to establish a wireless connection to a smart device, determine whether the smart device is included in a trust group of one or more smart devices, and send a communication to unlock the smart device when the input data is successfully authenticated and when the trust group includes the smart device.
Abstract:
Technologies for generating tasks from communication messages includes a mobile computing device for monitoring communication messages, parsing the communication messages to detect content indicative of upcoming tasks, generating a task for each of the upcoming tasks detected, generating a task list from the generated tasks, and generating an alarm for each task. Additionally, the mobile computing device receives tasks generated by a cloud server.
Abstract:
Technologies for establishing and managing a connection with a power line communication network include establishing a communication connection between an electronic device and a security server. A default device encryption key associated with the electronic device is changed to correspond with a new device encryption key of the security server. Thereafter, the electronic device may only join a power line communication network of a particular security server using a network membership key, which is encrypted with the device encryption key that the particular security server associates to the electronic device. The electronic device contains a circuit interrupt to interrupt a circuit of the electronic device if the electronic device is not able to successfully decrypt the network membership key.
Abstract:
Various systems and methods for locking computing devices are described herein. In an example, a portable device comprises an electro-mechanical lock; and a firmware module coupled to the electro-mechanical lock, the firmware module configured to: receive an unlock code; validate the unlock code; and unlock the electro-mechanical lock when the unlock code is validated. In another example, device for managing BIOS authentication, the device comprising an NFC module, the NFC module comprising an NFC antenna; and a firmware module, wherein the firmware module is configured to: receive an unlock code from an NFC device via the NFC antenna; validate the unlock code; and unlock a BIOS of the device when the unlock code is validated.
Abstract:
An example system that allows a camera enabled application, such as an augmented reality application, to run in a protected area may include a first device including a camera, the camera including a secure mode of operation and a display, an image processing module configured to convert image data from the camera to encoded data when the camera is in the secure mode and protect image data stored in the system, an encryption module configured to encrypt encoded data from the image processing module, and a protected audiovisual path mechanism configured to securely send augmented encoded data to the display.
Abstract:
In some embodiments, the invention involves parental or master control of a child or subordinate mobile phone without service provider intervention. An embodiment of the invention is a system and method relating to master control of the subordinate smart phone using features on the smart phones, and independent of features provided by the phone service providers. Communication between the master and subordinate phones may be initiated using near field communication, Bluetooth, direct connect to a PC, or by other secure, local wireless or wired connections. Once initiated, desired communication events are captured by the parental control application to effect control policies on the subordinate phone. Communication between the phones may be encrypted to prevent malicious intervention of message traffic. Other embodiments are described and claimed.
Abstract:
An example apparatus includes: a first earpiece to be positioned proximate a first ear of a user and including: a first microphone to transduce ambient sound external to the first earpiece into a first ambient audio signal, the ambient sound including sound indicative of a potential danger; and a first speaker to transduce a first input audio signal into music and the first ambient audio signal into the sound indicative of the potential danger; and a second earpiece to be positioned proximate a second ear of the user and including: a second microphone to transduce the ambient sound external to the second earpiece into a second ambient audio signal, the ambient sound including the sound indicative of the potential danger; and a second speaker to transduce a second input audio signal into the music and the second ambient audio signal into the sound indicative of the potential danger.
Abstract:
Wearable electronic device technology is disclosed. In an example, a wearable electronic device can include a handling portion that facilitates donning the wearable electronic device on a user. The wearable electronic device can also include a user authentication sensor associated with the handling portion and configured to sense a biometric characteristic of the user while the user is donning the wearable electronic device. In addition, the wearable electronic device can include a security module to determine whether the sensed biometric characteristic indicates an authorized user of the wearable electronic device.
Abstract:
A wearable device for binaural audio is described. The wearable device includes a feedback mechanism, a microphone, an always on binaural recorder (AOBR), and a processor. The AOBR is to capture ambient noise via the microphone and interpret the ambient noise. An alert is issued by the processor to the feedback mechanism based on a notification detected via the microphone in the ambient noise.