Abstract:
An image display device includes an image display unit including first pixels each constituted of sub-pixels of three or more colors included in a first color gamut and second pixels each constituted of sub-pixels of three or more colors included in a second color gamut different from the first color gamut, the first pixels and the second pixels being arranged in a matrix and adjacent to each other; and a processing unit that determines an output of the sub-pixels included in each pixel of the image display unit corresponding to an input image signal. The processing unit determines an output of the sub-pixels included in the other one of the pixels based on part of components of an input image signal corresponding to one of the first pixel and the second pixel that are adjacent to each other.
Abstract:
A display apparatus includes: a plurality of sub pixels that are included in a single pixel, that respectively perform a predetermined display based on a voltage which is supplied using a first electrode and a second electrode and display colors which are different from each other, wherein the plurality of sub pixels include areas which are different from each other, and respectively include pixels which have memory properties.
Abstract:
According to an aspect, a display device includes an image display unit in which pixels each including a plurality of sub-pixels are arranged in a matrix, and a color converting unit that performs color conversion to reduce power consumption in the image display unit. The color converting unit does not perform the color conversion when total power consumption obtained by adding up the power consumption in the image display unit and power consumption in the color converting unit in a case where the color conversion is performed exceeds the power consumption in the image display unit in a case where the color conversion is not performed.
Abstract:
According to one embodiment, a display device includes a display panel including a first sub display area and a second sub display area, and an illumination device, wherein the illumination device includes a first light source opposed to the first sub display area, a second light source opposed to the second sub display area, and a partition positioned between the first and second light sources and the display panel, and the partition includes a first side surface surrounding the first light source, a second side surface surrounding the second light source, and a connector which connects the first side surface and the second side surface, and the connector is formed of curved surfaces, or two or more flat surfaces, or a combination of curved surfaces and flat surfaces.
Abstract:
According to one embodiment, a display device includes a display panel including a first sub display area and a second sub display area, and an illumination device, wherein the illumination device includes a first light source opposed to the first sub display area, a second light source opposed to the second sub display area, and a partition positioned between the first and second light sources and the display panel, and the partition includes a first side surface surrounding the first light source, a second side surface surrounding the second light source, and a connector which connects the first side surface and the second side surface, and the connector is formed of curved surfaces, or two or more flat surfaces, or a combination of curved surfaces and flat surfaces.
Abstract:
According to one embodiment, a display device includes a display panel including a first sub display area and a second sub display area, and an illumination device, wherein the illumination device includes a first light source opposed to the first sub display area, a second light source opposed to the second sub display area, and a partition positioned between the first and second light sources and the display panel, and the partition includes a first side surface surrounding the first light source, a second side surface surrounding the second light source, and a connector which connects the first side surface and the second side surface, and the connector is formed of curved surfaces, or two or more flat surfaces, or a combination of curved surfaces and flat surfaces.
Abstract:
According to one embodiment, a liquid crystal display device includes scanning and video signal lines, pixel electrodes and first and second common electrodes. The pixel electrodes include first and second pixel electrodes with linear electrodes and connection portion. In the first pixel electrodes, the linear electrodes overlap the first common electrode, and the connection portion overlaps first slit between the first and second common electrodes. In the second pixel electrodes, the linear electrodes overlap the second common electrode, and the connection portion overlaps second slit between the second and first common electrodes. Different potentials are applied to the first and second common electrodes.
Abstract:
According to an aspect, a display device includes: a controller; and a pixel including: first to fourth sub-pixels including respective first to fourth color filters transmitting light having respective spectrum peaks falling on a spectrum of reddish green, a spectrum of bluish green, a spectrum of red, and a spectrum of blue, respectively. The first to fourth sub-pixels each include a reflective electrode reflecting light transmitted through the color filter. The first to fourth sub-pixels are each divided into sub-divided pixels having different areas to perform multiple gradation expression through a combination of whether each of the sub-divided pixels reflects light. The controller stores patterns of combinations of whether each of the sub-divided pixels reflects light according to an input signal, and controls operations of the sub-divided pixels through use of any one of the patterns based on a predetermined condition including light intensity.
Abstract:
According to one embodiment, an optical device includes a liquid crystal element including a first substrate including a plurality of first control electrodes, a second substrate which is opposed to the first substrate and comprises a second control electrode, and a first liquid crystal layer held between the first substrate and the second substrate, and a modulation element opposed to the liquid crystal element, the modulation element including a modulation portion which modulates incident light, and a non-modulation portion which is adjacent to the modulation portion.
Abstract:
According to an aspect, a display device includes: a display unit; a lighting unit emitting internal light; a measurement unit; and a control unit controlling an intensity of the internal light and a gradation value of each pixel in the display unit. The control unit calculates a required luminance value for a luminance value of a pixel to be N times as high as a luminance value indicated by an input signal, the pixel performing output with the largest gradation value out of the pixels in a predetermined image display region. The control unit determines the intensity of the internal light based on an intensity of the external light measured by the measurement unit and the required luminance value, and calculates an output gradation value based on the gradation value indicated by input signal, the intensity of the external light, and the intensity of the internal light.