Abstract:
A method of finding, recording and optionally evaluating object structures, especially on slides, preferably of fluorescent object structures such as gene spots. A microscope with a CCD camera, a scanning microscope or a preferably confocal laser scanning microscope can be used for recording and for the rapid and reliable detection of the object structures, with the image data being recorded using an illumination pattern that is projected into the object plane.
Abstract:
The invention discloses a method and system for processing scan signals from a confocal microscope. The confocal microscope comprises an illumination source and a scanning device with a scanning mirror system. A control and processing unit is provided, which unit uses a plurality of programmable devices for the real time processing of digital signals. The control and processing unit has at least three input ports and one output port. A first detector generates analog signals corresponding to the light reflected from a specimen within the microscope and a second detector generates analog signals corresponding to the intensity of the light from the illumination source. In addition, a position signal of the scanning laser beam is provided to the control and processing unit. Analog-to-digital converters receive the analog signals, generate digital signals and provide the digital signals to the input ports of the control and processing unit.
Abstract:
The invention relates to a method for measuring surfaces by confocal microscopy using the reflection method, specially to measure the superficial profiles (1) of treated or drilled teeth (2). The invention seeks to eliminate mistakes occurring when very inclined areas are measured. To this end, the method disclosed is characterized by a confocal representation with enhanced dynamics (relative sensitivity) enabling it to project both the retro-reflections and the weak scattered light (3) or fluorescent light of each focal plane (8).
Abstract:
The invention concerns a device for the confocal measuring of surfaces inside cavities of the body, specially to measure the surface profile (1) of teeth (2) in the mouth cavity. Said device has a probe (3) that can be introduced into the cavity of the body, a light source feeding the probe (3), a detector picking up a light signal (5) and a processor (6) to digitalize the detected signal transforming it into a tridimensional representation. The device is designed using a simple construction and enabling an error free scanning of the surfaces. To this end, the probe (3) is designed as a rotary scanner having at least one deviating device (7) deflecting the light beam (9) in the direction of the surface that is to be measured (1), the deviating device (7) can be positioned in another scanning axis (10) to forward the rotating light beam (9), and the detector (5) comprises a device for sequential or simultaneous scanning of several focal planes, both with regards to specular reflection and to weak scattered light or fluorescent light of the focal plane concerned.
Abstract:
A device for feeding a light beam from a UV laser (1) into a laser scanning microscope (2) has a beam-alignment assembly (3) for aligning the laser beam with the beam path of the microscope (2) and an optical-fiber element (4) located between the UV laser (1) and the beam-alignment assembly (3). The aim of the invention is to design the feed device so that it can be used for long periods in order to keep the time and expense necessary to change the feed device as low as possible. To achieve this, the invention provides a beam interrupter (5) located between the UV laser (1) and the optical-fiber element (4). The beam interrupter allows the beam from the UV laser (1) to pass through the optical-fiber element (4) only during scanning, i.e., when pictures are being generated.
Abstract:
In adjusting a microscope having at least two objectives for superimposing measuring beams of light in an object space to the end of obtaining an interference pattern and for monitoring the object space, each objective having a focal point, a focal plane and a pupil, auxiliary beams of light which are distinguishable from the measuring beams are directed into the objectives, and the auxiliary beams getting back out of the objectives are superimposed to obtain an auxiliary interference pattern. Further, the auxiliary beams getting back out of the objectives are imaged as spots.
Abstract:
An optical arrangement, in particular a microscope, having a light source (1) for illuminating an object, and a glass fiber (3), arranged between the light source (1) and the object, for transporting light along a prescribable distance between the light source (1) and the object, is configured with regard to the avoidance of fluctuations in the illuminating light power without a handicap in the optical adjustment of the arrangement in such a way that the glass fiber (3) is a polarizing glass fiber (3).
Abstract:
A scanning microscope for examination of a sample (31), having at least one optical component (89) that exhibits a wavelength-dependent characteristic and having an apparatus for wavelength-dependent detection that acquires measured values in at least two wavelength regions each characterized by a spectral width and a spectral position, is disclosed. The scanning microscope is characterized in that the wavelength-dependent characteristic of the at least one optical component (89) can be ascertained, can be at least temporarily stored in the form of a data set in a memory (49, 81), and can be considered upon acquisition and/or upon utilization of the measured values.
Abstract:
The invention relates to an optical system in the ray path of a confocal fluorescence microscope, comprising at least one laser light source (1, 2), a device positioned in the illuminating/detecting beam (3, 4, 5) for separating the exciting light (8) from the fluorescent light (9), an objective (10) arranged between the device and the object (7), and a detector (11) positioned downstream of the device situated in the detecting beam (5). The aim of the invention is to increase the fluorescence yield of the system while retaining its compact structure. To this end the separating device comprises a mirror (13) which is dimensioned and positioned in the illuminating and/or detecting beam (3, 4, 5) in such a way that for the dark-field illumination of the object (7) it reflects the non-expanded exciting beam arriving from the laser light source (1, 2) into the objective (10) and permits the transit of the fluorescence light (9) arriving from the object (7) in the direction of the detector (11) with full numerical aperture, the fluorescent light beam being reduced by the mirror (13) cross-section active in the detecting beam (5).
Abstract:
A scanning microscope possesses at least one illumination source for emitting an illuminating beam that is conveyed via a beam deflection device and an optical system to a specimen and scans the latter, the beam deflection device defining at least one illuminating beam rotation point. A device for axial displacement in particular of the beam deflection device, or of a lens preceding the objective, is provided for imaging of an image of the illuminating beam rotation point into the pupil of the objective.