Abstract:
The invention proposes an insulator within an X-ray tube having a vacuum side and an ambient side and a feedthrough substantially coinciding with an axis of symmetry at the vacuum side and an axis of symmetry at the ambient side. The axis of symmetry at the vacuum side and the axis of symmetry at the ambient side have an angle of at least 5°, preferably 90°, with respect to each other. An X-ray source comprising such an insulator is presented as well and the present invention also extends to a medical imaging apparatus for generating X-ray images of a patient thereby using an X-ray source with such an insulator. In an embodiment, an X-ray source is provided wherein the insulator is plugged to an electrical connector at the ambient surface.
Abstract:
The present invention relates to an apparatus (10) for imaging an object. It is described to position (210) an X-ray detector relative to at least one X-ray source such that at least a part of a region between the at least one X-ray source and the X-ray detector is an examination region for accommodating an object. In a first mode of operation, with the at least one X-ray source a first focal spot is produced (220), such that at least some first X-rays produced at the first focal spot pass through a first grating of an interferometer arrangement, the first grating positioned at a first position, and such that the at least some first X-rays pass through a second grating of the interferometer arrangement, the second grating positioned at a second position. In the first mode of operation, the at least some first X-rays are detected (230) with the X-ray detector at a detector position. In a second mode of operation, with the at least one X-ray source a second focal spot is produced (240), such that at least some second X-rays produced at the second focal spot avoid the first grating at the first position. In the second mode of operation, the at least some second X-rays are detected (250) with the X-ray detector at the detector position.
Abstract:
An X-ray emitting device (200) with an attenuating element (1) for an X-ray imaging device (100) is proposed. The attenuating element comprises a perforated sheet (3) of strongly X-ray absorbing material such as e.g. tungsten or molybdenum with a sheet thickness of e.g. less than 1 mm. The sheet (3) comprises multiple pinhole openings (5). Therein, a density of pinhole openings is higher at a center region of the sheet than at border regions of the sheet. Accordingly, a transparency to X-rays is higher at the center region than at the border regions. The pinhole openings (5) have geometries such that most parts of contours of the pinhole openings are non-parallel to edges of a focal spot (15) of an X-ray source (101) comprised in the X-ray emitting device. For example, the pinhole openings may have a circular, oval or any other cross-sectional geometry with non- linear edges. In an X-ray imaging device, such attenuating element may avoid beam hardening, needs less space than a conventional bow tie filter and is relatively insensitive to focal spot shifts.
Abstract:
Rotating anode X-ray tubes degrade over time because of the action of the electron beam altering the surface of the focal spot area of a rotating anode. This causes a degradation in a resulting object image, when the source is used in an imaging application. An X-ray tube housing assembly is discussed which allows the correction of such effects. In particular, an additional beam of the X-radiation, which is not used for imaging, may be used to correct such effects.