Abstract:
Circuits (20, 220, 320, 420) are provided for applying electrical charge collected from a piezoelectric device (22) to a charge storage device (24, 224, 424). The circuits comprise a peak detector (32, 232) and a switch(es) (34, 134, 234, 434) which is/are operated to initiate transfer of the electrical charge from the piezoelectric device to the charge storage device upon detection by the peak detector (32, 232) of a peak voltage across the piezoelectric device (22). In an example embodiment, the peak detector (32, 232) comprises a peak-detection capacitance (C4); a gain element (42, 242); and a non-linear PN junction circuit (40). The circuits can also comprise charge multiplier circuit (300) configured to continue application of the electrical charge to the charge storage device (224) after the switch (262) has been turned off and/or after a point in time when magnitude of the voltage across the charge storage device (224) equals the magnitude of the voltage across the piezoelectric device (22).
Abstract:
Actuator assemblies comprise an actuator element and two piezoelectric assemblies, with the two piezoelectric assemblies being configured and arranged for controlling movement of the actuator element. In some example implementations, the first piezoelectric assembly and the second piezoelectric assembly are constructed and arranged so that a temperature dependency of the first piezoelectric assembly is cancelled by the temperature dependency of the second piezoelectric assembly. In a first example embodiment, a first piezoelectric assembly comprises a first or main piezoelectric diaphragm connected to the actuator element for displacing the actuator element in response to displacement of the first piezoelectric diaphragm. The first piezoelectric diaphragm and the second piezoelectric diaphragm are fixedly mounted to a movable carriage. In second example embodiment, first variable reservoir having a first piezoelectric diaphragm contracts and a second variable reservoir having a second piezoelectric diaphragm expands during an extension movement of the actuator element, and vise versa during a withdrawal movement of the actuator element.
Abstract:
A motion amplifier (22) comprises piezoelectric diaphragm (30) and drive electronics (26) for applying a drive signal to the piezoelectric diaphragm. The motion amplifier preferably comprises (in addition to the piezoelectric diaphragm) a reaction mass (34) connected to the piezoelectric diaphragm; a reacted mass (40) connected to the piezoelectric diaphragm; and, a reacted mass spring (50, 270) for resiliently carrying the reacted mass. Motion or displacement of the piezoelectric diaphragm (30) is amplified to produce a greater displacement or motion of an actuator region or surface (46) of the reacted mass (40).
Abstract:
A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor.