Abstract:
A lens module according to one embodiment of the present invention comprises N lenses sequentially arranged from an object side to an image side, wherein: the N lens comprise a plurality of first coated lenses in which a first coating is applied to at least one surface thereof, and a plurality of second coated lenses in which a second coating is applied to at least one surface thereof; the first coating and the second coating have different thicknesses; and, in the plurality of first coated lenses, the angle (θ) between a line having a predetermined angle with respect to an optical axis and a normal line of a point in contact with the line on an object side surface is 50 degrees or higher.
Abstract:
According to an embodiment of the present invention, disclosed is a camera module comprising: an optical output unit for outputting an optical signal to an object; an optical unit for transmitting the optical signal reflected from the object; a sensor for receiving the optical signal transmitted through the optical unit; and a control unit for acquiring the depth map of the object by using the optical signal received by the sensor, wherein the sensor includes an effective area in which a light receiving element is arranged and a non-effective area excluding the effective area, and includes a first row area in which the effective area and the non-effective area are alternately arranged in a row direction, and a second row area in which the effective area and the non-effective area are alternately arranged in the row direction, and in which the effective area is arranged in a column direction at a position not overlapping with the effective area of the first row area, light reaching the effective area of the first row area is controlled by means of first shifting control so as to reach the non-effective area of the first row area or the non-effective area of the second row area, and light reaching the effective area of the second row area is controlled by means of the first shifting control so as to reach the non-effective area of the second row area or the non-effective area of the first row area.
Abstract:
According to one embodiment, disclosed is a method by which a camera module capable of acquiring depth information controls the output time point and the reception time point of light. By controlling both the output time point and the reception time point of light, the camera module can acquire the light of phases in which adjacent reception pixels differ from one another despite controlling light sources or reception pixels in line units.
Abstract:
Disclosed are a sensing method and a sensing apparatus for acquiring information about an object according to one embodiment. In particular, disclosed are a sensing method and a sensing apparatus for obtaining the shape of blood vessels by using information regarding the intensity of received light and information regarding the distance of an object.
Abstract:
Provided are a light-receiving device and lidar comprising the light-receiving device. The light-receiving device comprises: a first lens comprising a first lens surface for receiving light from an outside and a second lens surface for changing the path of the light received by the first lens surface and outputting the light to the outside; and a sensor on which light transmitted through the second lens surface is incident, wherein the first lens surface is a spherical surface, the second lens surface is an aspherical surface, and the focus of the first lens deviates from the sensor surface of the sensor.
Abstract:
Embodiments provide a light-emitting device package including a light source, a lens disposed on the light source, and a diffuser located on at least one of the interior of the lens or a light emission surface of the lens, so as to diffuse light. The diffuser includes at least one of a light dispersing agent distributed in the interior of the lens, or at least one light diffusion structure located on at least one of the outside or the inside of the light emission surface of the lens. The light diffusion structure includes a rough surface formed on the light emission surface of the lens.