Abstract:
A super-absorbent dressing assembly for use with a reduced-pressure wound treatment system includes a breathable, fluid restricted dry layer for placement against a wound, a super-absorbent layer, and a non-breathable layer, and a drape extending over the non-breathable layer. A reduced-pressure interface is available to fluidly couple the super-absorbent layer to a reduced-pressure subsystem. The super-absorbent dressing assembly preferably supplies a compressive force when placed under reduced pressure. A reduced-pressure treatment system uses a super-absorbent bolster to treat wounds, e.g., linear wounds.
Abstract:
Systems, devices, and methods for treating a tissue site on a patient with reduced pressure are presented. In one instance, a reduced-pressure interface includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region. The reduced-pressure interface further includes a reduced-pressure port disposed within the reduced-pressure-application region, a pressure-detection port disposed within the pressure-detection region, and a base connected to the conduit housing, the base having a manifold-contacting surface. The dividing wall includes a surface substantially coplanar with the manifold-contacting surface.
Abstract:
A reduced-pressure system for treating tissue, such as damaged subcutaneous tissue, includes a shaped dressing bolster for placing on the patient's epidermis and substantially sized to overlay the damaged subcutaneous tissue. The system further includes a sealing subsystem for providing a fluid seal over the shaped dressing bolster and a portion of the patient's epidermis, and a reduced-pressure subsystem for delivering a reduced pressure to the sealing subsystem. The reduced-pressure system may develop a force, which may include a vertical force that is realized at tissue site deeper than the epidermis or a closing force directed towards the incision. The shaped dressing bolster is shaped to evenly distribute the force. Other methods and systems are included.
Abstract:
An offloading and reduced-pressure treatment system includes an offloading and reduced-pressure treatment device, which has a plantar member formed from an offloading manifold material. The offloading and reduced-pressure treatment system further includes a reduced-pressure interface fluidly coupled to the pressure-transmitting layer of the plantar member, a reduced-pressure source, and a reduced-pressure delivery conduit fluidly coupled to the reduced-pressure source and to the offloading and reduced-pressure treatment device. The offloading manifold material includes a first barrier layer, a support layer, a pressure-transmitting layer and a second barrier layer. The offloading and reduced-pressure treatment device may also have a dorsal member and a bridge member. Methods are also presented.
Abstract:
A super-absorbent dressing assembly for use with a reduced-pressure wound treatment system includes a breathable, fluid restricted dry layer for placement against a wound, a super-absorbent layer, and a non-breathable layer, and a drape extending over the non-breathable layer. A reduced-pressure interface is available to fluidly couple the super-absorbent layer to a reduced-pressure subsystem. The super-absorbent dressing assembly preferably supplies a compressive force when placed under reduced pressure. A reduced-pressure treatment system uses a super-absorbent bolster to treat wounds, e.g., linear wounds.
Abstract:
A system, dressing, and method for providing reduced pressure treatment to a tissue site on a wound bed of a patient includes a variable wound dressing having a variable cover that is pliable at ambient pressure and less-pliable when placed under reduced pressure. The variable wound dressing has a first side and a second, patient-facing side, and in use, a treatment space is formed between the second, patient-facing side of the variable dressing and the wound bed. One or more ports are used to supply reduced pressure within the variable cover and to the wound site. A reduced-pressure subsystem is also included that is operable to supply reduced pressure to the one or more ports.
Abstract:
A super-absorbent dressing assembly for use with a reduced-pressure wound treatment system includes a breathable, fluid restricted dry layer for placement against a wound, a super-absorbent layer, and a non-breathable layer, and a drape extending over the non-breathable layer. A reduced-pressure interface is available to fluidly couple the super-absorbent layer to a reduced-pressure subsystem. The super-absorbent dressing assembly preferably supplies a compressive force when placed under reduced pressure. A reduced-pressure treatment system uses a super-absorbent bolster to treat wounds, e.g., linear wounds.
Abstract:
An offloading and reduced-pressure treatment system includes an offloading and reduced-pressure treatment device, which has a plantar member formed from an offloading manifold material. The offloading and reduced-pressure treatment system further includes a reduced-pressure interface fluidly coupled to the pressure-transmitting layer of the plantar member, a reduced-pressure source, and a reduced-pressure delivery conduit fluidly coupled to the reduced-pressure source and to the offloading and reduced-pressure treatment device. The offloading manifold material includes a first barrier layer, a support layer, a pressure-transmitting layer and a second barrier layer. The offloading and reduced-pressure treatment device may also have a dorsal member and a bridge member. Methods are also presented.
Abstract:
Multi-conduit connector apparatuses for use in negative pressure wound therapy (NPWT) apparatuses to wound dressing, and methods for installing multi-conduit connector apparatuses in NPWT apparatuses.