Abstract:
A multifunctional breath analyzer includes a receptor unit for receiving a breath sample from a test subject, a sensing unit providing a signal corresponding to the concentration of at least one volatile substance within the sample, elements for providing a signal indicative of the dilution of the breath sample, and an analyzing unit/processing unit for the identification and quantification of the volatile substance of the breath sample. The signal processing unit is configured to perform at least two different calculations for the quantification, and the signal processing unit is also configured to automatically display the result of a selected calculation, the selection being based on the signal indicating dilution.
Abstract:
A pressure sensor wire assembly measures pressure inside a body of a patient. The assembly comprises a pressure sensor element for measuring pressure and to generate a pressure sensor signal representative of the pressure, and a pressure sensor wire having the pressure sensor element at its distal portion, and adapted to be inserted into the body in order to position the sensor element within the body. A sensor signal adapting circuitry is an integrated part of the assembly, wherein the pressure sensor signal is applied to the adapting circuitry which is adapted to automatically generate an output pressure signal, related to the sensor signal, in a standardized format such that the measured pressure is retrievable by an external physiology monitor. The assembly further comprises an external pressure sensor to measure the pressure outside the patient's body and to generate external pressure values in dependence thereto.
Abstract:
A pressure sensor wire assembly measures pressure inside a body of a patient. The assembly comprises a pressure sensor element for measuring pressure and to generate a pressure sensor signal representative of the pressure, and a pressure sensor wire having the pressure sensor element at its distal portion, and adapted to be inserted into the body in order to position the sensor element within the body. A sensor signal adapting circuitry is an integrated part of the assembly, wherein the pressure sensor signal is applied to the adapting circuitry which is adapted to automatically generate an output pressure signal, related to the sensor signal, in a standardized format such that the measured pressure is retrievable by an external physiology monitor. The assembly further comprises an external pressure sensor to measure the pressure outside the patient's body and to generate external pressure values in dependence thereto.
Abstract:
A femoral compression device (1) for compressive bearing against the femoral artery of a patient, comprising a base plate (2), an inflatable air cushion (4), and an electronic manometer (8) connected to the inflatable air cushion for measurement of the current pressure difference between the pressure prevailing inside the inflatable air cushion and the ambient air pressure. The femoral compression device can further comprise a mechanical device (11; 46) which prevents an air opening leading to the inflatable air cushion from being closed before the manometer is zeroed. In another embodiment, an electronic manometer is provided such that a current characteristic of an electric signal representing the current pressure difference can be compared with a corresponding characteristic which was obtained at zero pressure difference and which was stored in the electronic manometer, wherein the manometer cannot be zeroed as long as the current characteristic deviates more than a predetermined amount from the stored characteristic.
Abstract:
The invention relates to a sensor and guide wire assembly (21) for intravascular measurements of physiological variables in a living body, comprising a core wire (22), a first coil (23), a jacket (24), and a second coil (25). The jacket (24) comprises a first end portion (24a), which is crimped onto the core wire (22) and over which a portion of the first coil (23) is threaded, and a second end portion (24b), which is crimped onto the core wire (22) and over which a portion of the second coil (25) is threaded.
Abstract:
The invention relates to a sensor and guide wire assembly for intravascular measurements within a living body, wherein a sensor element, which is arranged at a distal portion of a guide wire, comprises at least one piezoresistive nanowire.
Abstract:
The invention relates to a sensor and guide wire assembly including a pressure sensor having a plurality of terminals, the sensor being mounted in the distal end region of a core wire. It also includes two to four electrodes for conductance measurement, also provided in the distal end region. Two electrodes are electrically insulated from each other.
Abstract:
A method to assist an operator of an interactive measurement system for determining flow related parameters based upon physiological signals obtained by a measurement unit that comprises a catheter adapted to be inserted into a vessel inside a body of a human or an animal, a wire adapted to be inserted into the catheter and provided with a temperature sensor at its distal end, and a computer means adapted to receive and store detected temperature signals received from said sensor and said wire. The system further comprises a graphical user interface on a display screen connected to said computer means, wherein the method comprises the steps of: determine if a valid activation command is received from the operator, and upon receipt of a valid activation command activate a continuous analysis of detected temperature signals, display on said graphical user interface an operator instruction in an instruction window instructing the operator to perform steps in a measurement procedure to obtain said flow related parameters, detect steps performed by the operator during the measurement procedure and display on said user interface the current status of said performed steps, display on said user interface, in real-time, temperature curves related to the measurement procedure, determine at least one flow related parameter based upon the temperature measurements obtained during said measurement procedure, display on said user interface said at least one determined flow related parameter.
Abstract:
A guide wire for measuring physiological characteristics inside a body includes a sensor (14) for monitoring the physical variable and for forming an output signal characteristic for the value of the physical variable. The sensor is connected to a first electrical potential of an electronic unit (22) via an electrical wire (11) extending along the guide wire. An internal body electrode (17) is connected to the sensor (14) and is in contact with body fluids surrounding the sensor circuit. The guide wire (10) is inserted into a vessel of the body (25), and a second electrode (21) is applied near the internal body electrode, and the sensor circuit is powered by a second potential of the electronic unit (22) via a part of the body.
Abstract:
The invention relates to a device for measuring pressure, temperature and/or flow velocity. It includes a sensor (6) with a sensor support body (13) provided with a diaphragm (15) covering a cavity (14) formed in the support body (13). A pressure sensitive element (41) is mounted on the diaphragm, for recording pressure. Furthermore, a temperature sensitive resistor (42) is mounted in the vicinity of the pressure sensitive resistor and has a known temperature dependence, for recording temperature. It also includes an electrical circuit (43, 44, 45, 46) selectively outputting signals from either of the pressure sensitive element and the temperature sensitive resistor.