Abstract:
A device may include a first photodetector to generate a first current based on an optical power of an optical beam. The device may include a beam splitter to split a portion of the optical beam into a first beam and a second beam. The device may include a wavelength filter to filter the first beam and the second beam. The wavelength filter may filter the second beam differently than the first beam based on a difference between an optical path length of the first beam and an optical path length of the second beam through the wavelength filter. The device may include second and third photodetectors to respectively receive, after the wavelength filter, the first beam and the second beam and to generate respective second currents.
Abstract:
A wavelength selective switch (WSS) may include a front-end unit that includes an input few-mode fiber (FMF) providing an input optical signal including multiple wavelengths. The multiple wavelengths may each have N modes. The front-end unit may include two or more output few-mode fibers (FMFs), and a side that has a 1×N port for each of the input FMF and the two or more output FMFs. Each of the 1×N ports may be single mode in a wavelength dispersion dimension and N-mode in a switching dimension. The WSS may include a switching element to receive the input optical signal from the front-end unit, switch each of the multiple wavelengths of the input optical signal to form one or more output optical signals, and direct each of the one or more output optical signals to a corresponding 1×N port of the front-end unit.
Abstract:
A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.
Abstract:
The number of wavelength selective switch (WSS) units in a WSS device can be doubled by using polarization properties of optical beams propagating through the WSS device. Beams from different WSS units are orthogonally polarized at the front end, propagated through collimator, wavelength dispersing element, and a focusing element, and impinge on a polarizing beamsplitter, which directs sub-beams at different polarizations to different directing elements of a director array. A polarization diversity configuration at the back end can be used to reduce polarization dependent loss.
Abstract:
The number of wavelength selective switch (WSS) units in a WSS device can be doubled by using polarization properties of optical beams propagating through the WSS device. Beams from different WSS units are orthogonally polarized at the front end, propagated through collimator, wavelength dispersing element, and a focusing element, and impinge on a polarizing beamsplitter, which directs sub-beams at different polarizations to different directing elements of a director array. A polarization diversity configuration at the back end can be used to reduce polarization dependent loss.
Abstract:
An optical device may include a dispersion element. The optical device may include a reflective optic to reflect an optical beam with a fixed offset perpendicular to a dispersion direction of the dispersion element and with a negative offset in the dispersion direction of the dispersion element. The reflective optic may be aligned to the dispersion element to offset an optical beam with respect to the dispersion element and to cause the optical beam to pass through the dispersion element on a plurality of passes, offsetting the optical beam on each of the plurality of passes.
Abstract:
A free-space MCS may include an input port to launch a beam of light, N output ports, a beam splitter to split the beam of light into N portions, and a deflector array including N deflectors aligned in an array direction. Each deflector may have an active region with a size in the array direction that matches a size in the array direction of a portion, of the N portions, incident thereon. The free-space MCS may include first beam shaping optics to form a first elliptical beam spot at the beam splitter with a major axis substantially perpendicular to the switching direction, and an angle-to-offset element to direct each of the N portions from the beam splitter to a different deflector of the N deflectors. Each of the N portions may have, at the deflector, a second elliptical beam spot with a major axis substantially parallel to the switching direction.
Abstract:
A zoned waveplate has a series of transversely stacked birefringent zones alternating with non-birefringent zones. The birefringent and non-birefringent zones are integrally formed upon an AR-coated face of a single substrate by patterning the AR coated face of the substrate with zero-order sub-wavelength form-birefringent gratings configured to have a target retardance. The layer structure of the AR coating is designed to provide the target birefringence in the patterned zones and the reflection suppression.
Abstract:
An optical cross-connect including two deflector arrays optically separated by an angle-to-offset (ATO) element, wherein each deflector array includes a plurality of deflectors aligned in an array direction, each deflector array having a switching direction substantially perpendicular to the corresponding array direction, the array direction of the two deflector arrays being substantially perpendicular. Beam shaping optics convert light transmitted towards the first deflector array to have an elliptical cross-section at the first deflector array, thus providing a relatively simple and compact optical cross-connect.
Abstract:
An optical device may include a laser component to emit a source beam and an optical component to split the source beam to generate a first beam and a second beam. The optical device may include a multiplexing component to multiplex the first beam and the second beam to form a first multiplexed beam, an optical system to receive the first multiplexed beam and demultiplex the first beam and the second beam, and a scanning component to scan a field of view with the first beam and the second beam and receive the first beam and the second beam reflected from the field of view. The optical system may multiplex the first beam and the second beam reflected from the field of view to form a second multiplexed beam, and a demultiplexing component may demultiplex the first beam and the second beam reflected from the field of view.