Abstract:
An insulating packer fluid including an oleaginous fluid and a styrenic thermoplastic block copolymer and methods of preparing the packer fluid are provided. Also provided are methods of using the insulating packer fluid that include pumping an insulating packer fluid into an annulus formed between two concentric strings of pipe extending into a wellbore.
Abstract:
A method may include circulating a breaker fluid into a wellbore having a filtercake on the walls thereon, the filter cake including copolymer formed from at least one acrylamide monomer and at least one sulfonated anionic monomer, the breaker fluid comprising: a base fluid; and a mixture of hydrolysable esters of dicarboxylic acids.
Abstract:
Compositions herein may include an aqueous fluid, a crosslinked polyvinylpyrrolidone (PVP), and a betaine based polymer. Methods herein may include pumping a selected amount of a fluid loss pill into a formation, the fluid loss pill including a crosslinked PVP and a betaine based polymer.
Abstract:
A brine viscosifier includes at least one monomer and triethoxyvinylsilane (TEVS) to provide crosslinking among the at least one monomer. A method includes admixing a composition comprising a brine, a thermal stabilizer, a pH buffer, and a polymer. The polymer may include a monomer, an organic crosslinker, an inorganic crosslinker; and an initiator.
Abstract:
Compositions may include a monomer, an organic crosslinker, an inorganic crosslinker, and an initiator. Furthermore, compositions may include at least one monomer and triethoxyvinylsilane (TEVS) to provide crosslinking among the at least one monomer.
Abstract:
Insulating packer fluids containing colloidal silica inorganic additives may be used in methods that reduce convective currents in a packer fluid. In other aspects, packer fluids containing colloidal silica inorganic additives may be used in methods of insulating production wells and methods for stimulating production of hydrocarbons.
Abstract:
A drilling fluid, comprising an aqueous continuous phase, a polymeric fluid loss control agent formed from at least an acrylamide monomer, and a sulfonated anionic monomer, and a gelling material comprising at least one of clay or a cross-linked polyvinylpyrrolidone.
Abstract:
A coiled tubing wellbore fluid may include a base fluid; and a crosslinked and branched polymeric fluid loss control agent formed from at least an acrylamide monomer and a sulfonated anionic monomer; wherein the coiled tubing wellbore fluid has a low shear rate viscosity, measured at 120° F. at 3 rpm, of at least 20,000 centipoise.
Abstract:
A wellbore fluid includes a base fluid; and a crosslinked and branched polymeric fluid loss control agent formed from at least an acrylamide monomer and a sulfonated anionic monomer; wherein the fluid loss control agent has an extent of crosslinking that is selected so that the fluid loss control agent has a viscosity that is within a peak viscosity response of the viscosity response curve.
Abstract:
Compositions herein may include an oleaginous continuous phase, an aqueous discontinuous phase, a first clay comprising an organophilic smectite clay, and a second clay comprising a magnesium silicate clay. Methods herein may include circulating such fluids downhole as well as admixing a magnesium silicate dispersed clay and an organophilic smectite clay in an oleaginous base fluid.