Abstract:
Method of removing metals from hydrocarbon feedstock using esters of carboxylic acids, and additives for the same, are provided, wherein hydrocarbon stream including crude oil containing metals and salts thereof, wherein metal is calcium and its salt is calcium naphthenate, is mixed with an effective metal-removing-amount of an aqueous extraction-solution of non-precipitating and non-fouling additive comprising a chemical compound selected from a group consisting of methyl or ethyl or propyl or isopropyl mono- and/or di-esters of any one of the carboxylic acids selected from the groups consisting of maleic acid, maleic anhydride, and fumaric acid, or an appropriate combination of said esters, or an appropriate combination of any of said esters with any of said carboxylic acids to form a hydrocarbonous phase and an aqueous phase containing the metal ions; and separating aqueous phase.
Abstract:
The present invention includes methods for improving the operational parameters in primary fractionators which are experiencing diminished operation efficiencies due to deposits of polymerized hydrocarbon species. The invention comprises the step of adding a foam reducing amount of a foam reducing composition at the primary fractionator. A reduction in foaming is achieved whereby the operational efficiency of the process is improved based upon operation parameters including, but not limited to, liquid-gas contact ratio, product top temperature, pressure differentials, gasoline end point or combinations thereof.
Abstract:
Method of removing metals from hydrocarbon feedstock using esters of carboxylic acids, and additives for the same, are provided, wherein hydrocarbon stream such as crude oil containing metals and slats thereof, such as calcium and calcium naphthenate, is mixed with an effective metal-removing-amount of an aqueous extraction-solution of non-precipitating and non-fouling additive comprising a chemical compound selected from a group consisting of methyl or ethyl or propyl or isopropyl mono- and/or di-esters of any of three carboxylic acids, such as, maleic acid, maleic anhydride, or fumaric acid or an appropriate combination of said esters, or an appropriate combination of any of said esters with any of said three acids, enabling formation of a hydrocarbonous phase and an aqueous phase containing the metal ions; and separating aqueous phase.
Abstract:
A method for inhibiting and dissolving the deposits formed on caustic or alkaline scrubbers used in scrubbing acidic gases such as carbon dioxide, hydrogen sulfide, which are formed during the pyrolytic cracking of naphtha, ethane, and propane. The cracking operations produce certain oxygenated compounds such as vinyl acetate or acetaldehyde, which undergo polymerization under alkaline condition. The vinyl acetate on hydrolysis releases acetaldehyde under alkaline conditions. Amino acids such as 6 amino caproic acid and lactams such as epsilon caprolactam not only prevent but also dissolve the polymers formed by aldol condensation.
Abstract:
There is provided an additive and method for removal of calcium from crude oil or its blends containing calcium naphthenate at low pH as well as at high pH. Particularly, there is also provided an additive and method for removal of calcium from crude oil or its blends containing calcium naphthenate under basic or alkaline conditions and at low pH as well as at high pH varying from about 5 to 11.
Abstract:
The present invention relates to the field of processing hydrocarbons which causes corrosion in the metal surfaces of processing units. The invention addresses the technical problem of high temperature naphthenic acid corrosion and sulphur corrosion and provides a solution to inhibit these types of corrosion. The composition formed by reacting high reactive polyisobutylene (HRPIB) with phosphorous pentasulphide in presence of catalytic amount of sulphur provides high corrosion inhibition efficiency in case of high temperature naphthenic acid corrosion inhibition and sulphur corrosion inhibition. The invention is useful in all hydrocarbon processing units, such as, refineries, distillation columns and other petrochemical industries.
Abstract:
An additive capable of avoiding formation of impurities and capable of removing or dissolving impurities formed and accumulated at the interphase of organic and aqueous layers on reaction between calcium naphthenate and sulfur compound including H2S in presence of water in mixture of crude oils containing calcium naphthenate and sulfur compound or H2S, wherein the additive is glyoxylic acid is provided. A method for avoiding formation of impurities and for removing or dissolving impurities formed and accumulated at the interphase of organic and aqueous layers on reaction between calcium naphthenate and sulfur compound including H2S in presence of water in mixture of crude oils containing calcium naphthenate and sulfur compound including H2S, comprising treating mixture of crude oils containing calcium naphthenate and sulfur compound or H2S with glyoxylic acid is also provided.
Abstract:
The present invention relates to inhibition of high temperature naphthenic acid corrosion occurring in hydrocarbon processing units. The invention provides an effective novel non-polymeric and non-fouling additive for inhibiting high-temperature naphthenic acid corrosion, comprising an effective corrosion-inhibiting amount of a second phosphate ester wherein said second phosphate ester is obtained by reacting a first phosphate ester with an oxirane compound selected from the group consisting of butylene oxide, ethylene oxide, propylene oxide or any other oxirane compound or a combination thereof, preferably with butylene oxide, capably yielding said second phosphate ester, having a structure A or B, wherein R1 and R2 are each independently selected from the group consisting of moieties having 1 to 20 carbon atoms and R1 and R2 may be identical or different, X is H, CH3 or C2H5; and n may vary from 1 to 20, wherein said first phosphate ester is having a structure I or II, wherein R1 and R2 are each independently selected from the group consisting of moieties having 1 to 20 carbon atoms and R1 and R2 may be identical or different, said first phosphate ester being obtained as a reaction product of reaction of an alcohol with a phosphorous pentaoxide.
Abstract:
The present invention relates to the field of corrosion inhibition in hydrocarbon fluid processing units. The present invention comprises a new additive for inhibiting acid corrosion comprising polymeric thiophosphate ester, which is obtained by reaction of a polymer compound having mono, di or poly hydroxyl group, preferably polymer compound which is hydroxyl-termination, more preferably said polymer compound comprising hydroxyl-terminated polyisobutylene or polybutene and phosphorous pentasulphide. Said polymeric thiophosphate ester is further reacted with any oxide selected from group consisting of ethylene oxide, butylenes oxide or propylene oxide or such other oxide, preferably ethylene oxide, capably forming ethylene oxide derivative of thiophosphate ester. The invention is useful effecting acid corrosion inhibition on the metal surfaces of a distillation unit, distillation column, trays, packing and pump around piping.
Abstract:
The invention relates to field of processing hydrocarbon feedstock including crude oil, wherein metals such as calcium are removed. In the face of the rising prices of crude oil, refiners are forced to process opportunity crudes such as DOBA, which pose many problems including fouling of equipment due to certain metallic salts, such as calcium napthenate. Calcium, which cannot be removed from crude oil during normal desalting process, poses very serious problems. The invention provides method for removal of calcium, wherein crude oil is mixed, with effective metal removing amount of aqueous extraction solution of an additive comprising a chemical compound selected from a group consisting of metallic acid, maleic anhydride or fumaric acid or salts or derivatives thereof, enabling separation of hydrocarboneous phase and aqueous phase containing metal ions, in crude desalter. Only hydrocarboneous phase devoid of calcium is processed further, thereby preventing fouling of equipment.