Abstract:
A planning tool plans movement of a boring tool for an underground drilling operation. The planning tool includes one or more wheels for rolling on a surface of the ground along a path responsive to movement by an operator to characterize the surface contour and to generate guidance for the boring tool to reach a target position. Planning can additionally be based on waypoints. The planning tool can be rolled unidirectionally or bidirectionally to characterize the surface contour. Bidirectional movement cancels accelerometer fixed bias. Path stitching is used to plan around obstacles. The planning tool can facilitate tracker placement. The planning tool can collect noise information for frequency selection purposes. A described technique maximizes linear drilling in an underground plan. Compensation and/or warnings are provided for unsteady, fast and slow movement of the planning tool while measuring the surface contour.
Abstract:
Systems, apparatus and methods are described for purposes of initiating a response to detection of an adverse operational condition involving a system including a drill rig and an inground tool. The response can be based on an uphole sensed parameter in combination with a downhole sensed parameter. The adverse operational condition can involve cross-bore detection, frac-out detection, excessive downhole pressure, a plugged jet indication and drill string key-holing detection. A communication system includes an inground communication link that allows bidirectional communication between a walkover detector and the drill rig via the inground tool. Monitoring of inground tool depth and/or lateral movement can be performed using techniques that approach integrated values. Bit force based auto-carving is described in the context of an automated procedure.
Abstract:
Systems, apparatus and methods are described for purposes of initiating a response to detection of an adverse operational condition involving a system including a drill rig and an inground tool. The response can be based on an uphole sensed parameter in combination with a downhole sensed parameter. The adverse operational condition can involve cross-bore detection, frac-out detection, excessive downhole pressure, a plugged jet indication and drill string key-holing detection. A communication system includes an inground communication link that allows bidirectional communication between a walkover detector and the drill rig via the inground tool. Monitoring of inground tool depth and/or lateral movement can be performed using techniques that approach integrated values. Bit force based auto-carving is described in the context of an automated procedure.
Abstract:
Systems, apparatus and methods are described for purposes of initiating a response to detection of an adverse operational condition involving a system including a drill rig and an inground tool. The response can be based on an uphole sensed parameter in combination with a downhole sensed parameter. The adverse operational condition can involve cross-bore detection, frac-out detection, excessive downhole pressure, a plugged jet indication and drill string key-holing detection. A communication system includes an inground communication link that allows bidirectional communication between a walkover detector and the drill rig via the inground tool. Monitoring of inground tool depth and/or lateral movement can be performed using techniques that approach integrated values. Bit force based auto-carving is described in the context of an automated procedure.
Abstract:
Systems, apparatus and methods are described for purposes of initiating a response to detection of an adverse operational condition involving a system including a drill rig and an inground tool. The response can be based on an uphole sensed parameter in combination with a downhole sensed parameter. The adverse operational condition can involve cross-bore detection, frac-out detection, excessive downhole pressure, a plugged jet indication and drill string key-holing detection. A communication system includes an inground communication link that allows bidirectional communication between a walkover detector and the drill rig via the inground tool. Monitoring of inground tool depth and/or lateral movement can be performed using techniques that approach integrated values. Bit force based auto-carving is described in the context of an automated procedure.
Abstract:
Systems, apparatus and methods are described for purposes of initiating a response to detection of an adverse operational condition involving a system including a drill rig and an inground tool. The response can be based on an uphole sensed parameter in combination with a downhole sensed parameter. The adverse operational condition can involve cross-bore detection, frac-out detection, excessive downhole pressure, a plugged jet indication and drill string key-holing detection. A communication system includes an inground communication link that allows bidirectional communication between a walkover detector and the drill rig via the inground tool. Monitoring of inground tool depth and/or lateral movement can be performed using techniques that approach integrated values. Bit force based auto-carving is described in the context of an automated procedure. Loss of locator to drill rig telemetry can trigger an automated switch to a different communication path within the system.