Abstract:
Apparatus and methods are disclosed, including a method that performs a first operation on a first resistance variable element using a common source voltage, a first data line voltage and a first control gate voltage, and then performs a second operation on a second resistance variable element using the common source voltage, a second data line voltage and a second control gate voltage. Additional apparatus and methods are described.
Abstract:
A method for memory device fabrication includes forming a plurality of continuous fins on a substrate. An insulator material is formed around the fins. The continuous fins are etched into segmented fins to form exposed areas between the segmented fins. An insulator material is formed in the exposed areas wherein the insulator material in the exposed areas is formed higher than the insulator material around the fins. A metal is formed over the fins and the insulator material. The metal formed over the exposed areas is formed to a shallower depth than over the fins.
Abstract:
Arrays of memory cells having a common gate terminal and methods of operating and forming the same are described herein. As an example, an array of memory cells may include a group of memory cells each having a resistive storage element coupled to a select device. Each select device includes a first terminal, a second terminal, and a gate terminal, where the gate terminal is common to each memory cell of the group.
Abstract:
Methods, apparatuses, and systems for providing a body connection to a vertical access device. The vertical access device may include a digit line extending along a substrate to a digit line contact pillar, a body connection line extending along the substrate to a body connection line contact pillar, a body region disposed on the body connection line, an electrode disposed on the body region, and a word line extending to form a gate to the body region. A method for operation includes applying a first voltage to the body connection line, and applying a second voltage to the word line to cause a conductive channel to form through the body region. A memory cell array may include a plurality of vertical access devices.
Abstract:
As described herein, an apparatus may include a memory that includes a first portion, a second portion, and a third portion. The apparatus may also include a memory controller that includes a first logical-to-physical table stored in a buffer memory. The memory controller may determine that the first portion is accessed sequential to the second portion and may adjust the first logical-to-physical table to cause a memory transaction performed by the memory controller to access the third portion as opposed to the first portion.
Abstract:
Some embodiments include a memory cell with two transistors and one capacitor. The transistors are a first transistor and a second transistor. The capacitor has a first node coupled with a source/drain region of the first transistor, and has a second node coupled with a source/drain region of the second transistor. The memory cell has a first body region adjacent the source/drain region of the first transistor, and has a second body region adjacent the source/drain region of the second transistor. A first body connection line couples the first body region of the memory cell to a first reference voltage. A second body connection line couples the second body region of the memory cell to a second reference voltage. The first and second reference voltages may be the same as one another, or may be different from one another.
Abstract:
As described herein, an apparatus may include a memory that includes a first portion, a second portion, and a third portion. The apparatus may also include a memory controller that includes a first logical-to-physical table stored in a buffer memory. The memory controller may determine that the first portion is accessed sequential to the second portion and may adjust the first logical-to-physical table to cause a memory transaction performed by the memory controller to access the third portion as opposed to the first portion.
Abstract:
Some embodiments include gated bipolar junction transistors. The transistors may include a base region between a collector region and an emitter region; with a B-C junction being at an interface of the base region and the collector region, and with a B-E junction being at an interface of the base region and the emitter region. The transistors may include material having a bandgap of at least 1.2 eV within one or more of the base, emitter and collector regions. The gated transistors may include a gate along the base region and spaced from the base region by dielectric material, with the gate not overlapping either the B-C junction or the B-E junction. Some embodiments include memory arrays containing gated bipolar junction transistors. Some embodiments include methods of forming gated bipolar junction transistors.
Abstract:
Some embodiments include a memory cell with two transistors and one capacitor. The transistors are a first transistor and a second transistor. The capacitor has a first node coupled with a source/drain region of the first transistor, and has a second node coupled with a source/drain region of the second transistor. The memory cell has a first body region adjacent the source/drain region of the first transistor, and has a second body region adjacent the source/drain region of the second transistor. A first body connection line couples the first body region of the memory cell to a first reference voltage. A second body connection line couples the second body region of the memory cell to a second reference voltage. The first and second reference voltages may be the same as one another, or may be different from one another.
Abstract:
Apparatus and methods are disclosed, including a method that performs a first operation on a first resistance variable element using a common source voltage, a first data line voltage and a first control gate voltage, and then performs a second operation on a second resistance variable element using the common source voltage, a second data line voltage and a second control gate voltage. Additional apparatus and methods are described.