Abstract:
An organic light emitting display includes pixels positioned at intersections between data lines and scan lines, a data change unit receiving first data of i (i is a natural number) bits to generate second data of j (j is a natural number equal to or larger than i) bits so that a desired gamma value is realized, a gamma voltage unit for generating gray scale voltages corresponding to l (l is a natural number larger than i) bits, and a data driver for selecting one of the gray scale voltages as a data signal to correspond to the second data and for supplying the data signal to the data line.
Abstract:
A flat panel display includes a bezel having a first substrate part and a second substrate part perpendicularly extending from one side of the first substrate part. A flexible printed circuit board is attached to the second substrate part by a conductive tape, and electrostatic discharge and damage caused by external mechanical interference can be prevented.
Abstract:
An organic light emitting display includes a display unit including a plurality of pixels coupled to scan lines and data lines, a data driver for applying data signals to the data lines, a black data inserting unit between the display unit and the data driver for applying black data to the display unit, the black data being applied between periods in which the data signals are applied, and a timing controller for controlling the data driver and the black data inserting unit.
Abstract:
A display device having a thinner shape and a uniform luminance includes a display panel that displays images. The display device has upper and lower peripheral regions. A printed circuit board (PCB) is positioned at the back of the display panel to control and drive the display panel and to provide power to the display panel. Thermal conductive sheets are attached to the back of the display panel. In the display device, each of the thermal conductive sheets includes a base film that is attached to the back of the display panel and is formed of an electrical insulating material. A power supply pattern is formed on the base film to provide power to the display panel. A ground pattern is formed to be spaced apart and electrically insulated from the power supply pattern.
Abstract:
Disclosed is a method of fabricating a microlens. The method includes forming a self assembly monolayer having a strong hydrophobicity on a substrate; forming a plurality of ink droplets on the self assembly monolayer by jetting a transparent ink using an inkjet apparatus, the transparent ink including a first solvent having a first boiling point, a second solvent having a second boiling point lower than the first boiling point and a silicon oxide (SiOx) solid material dispersed in the first and second solvents; and drying the plurality of ink droplets.
Abstract:
A flat panel display (FPD) has a conductive heat proof plate inserted into the back surface of a display panel on which printed circuit boards (PCBs) and signal lines are formed. The signal lines are surrounded by a blocking unit, and the external surface of the blocking unit is made of a conductive material to be electrically coupled to the heat proof plate so that resistance against electromagnetic compatibility (EMC) of a large flat panel display is improved and a thermal characteristic is improved.
Abstract:
A power supply unit adapted to prevent or reduce damage to devices when the devices receive power with an abnormal voltage, and an organic light emitting display device using the same. An embodiment of the present invention provides a power supply unit, including: a power block including an input terminal for receiving an input power, an output terminal for outputting an output power, and an enable terminal for receiving an enable signal for controlling a driving of the power block; an input power unit configured to concurrently transfer the input power to the input terminal and the enable terminal; and a controller configured to control a voltage of the input power transferred to the enable terminal to determine the driving time point of the power block, and an organic light emitting display device using the same.
Abstract:
A light emitting display is configured to reduce or prevent motion blur by shortening a time that a black frame is displayed between image frames. One embodiment includes display region, a data driver, a scan driver, and a controller. The display region displays frames of images according to a data signal and a scan signal. The data driver transmits data for displaying first frames and second (black) frames between the first frames. The scan driver includes first and second scan driving circuits for transmitting scan signals, and a switch unit for selectively coupling the first and second scan driving circuits. The scan driver transmits scan signals sequentially during the first frames and transmits scan signals to at least two of the scan lines concurrently by driving the first and second scan driving circuits in parallel during the second frames. The controller transmits a driving control signal to control the switch.
Abstract:
Disclosed is a method of fabricating a microlens. The method includes forming a self assembly monolayer having a strong hydrophobicity on a substrate; forming a plurality of ink droplets on the self assembly monolayer by jetting a transparent ink using an inkjet apparatus, the transparent ink including a first solvent having a first boiling point, a second solvent having a second boiling point lower than the first boiling point and a silicon oxide (SiOx) solid material dispersed in the first and second solvents; and drying the plurality of ink droplets.
Abstract:
In a flexible display device including flexibility and toughness, and a method of manufacturing the flexible display device, the flexible display device includes a glass substrate, a flexible substrate and a display unit which are sequentially stacked, and the flexible display device has a structure wherein a surface area of the flexible substrate is larger than a surface area of the glass substrate. A volume of the device may be significantly reduced for convenience of portability since a flexible area where the glass substrate is not located may be folded or rolled. Also, a stable circuit connection may be guaranteed since the driving chip is installed on a hard area which does not go through a heating process in order to separate the glass substrate and the flexible substrate during the manufacturing process.