Abstract:
A display device is configured to determine a target location. The display device includes a waveguide element, a display panel and a processor. The waveguide element is configured to receive an image and reflect the image to an eyeball location. The display panel is located at one side of the waveguide element. The display panel has a plurality of pixel units. The display panel is located between the waveguide element and the target location. The processor is electrically connected to the display panel. The processor is configured to determine the pixel units in a blocking area of the display panel to be opaque. The blocking area of the display panel overlaps the target location. The display panel displays the pixel units in the blocking area as grayscale according to the processor.
Abstract:
An optical lens assembly includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens and an eighth lens. The first lens has a convex surface toward an object side of the optical lens assembly and a concave surface toward an imaging side of the optical lens assembly. The first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens and the eighth lens are sequentially arranged along an optical axis from the object side to the imaging side.
Abstract:
A 3D space rendering system with multi-camera image depth includes a headset and a 3D software. The headset includes a body with a first support and a second support. The 3D software is in electrical signal communication with a first image capturing device and a second image capturing device. The system makes it possible to establish 3D image models at low cost, thereby allowing more people to create such models faster.
Abstract:
The present invention discloses active blue light leakage preventing LED structures. Each of the structure includes a circuit board, at least one blue light LED die, a photo detector and a wavelength transformation layer, wherein the electric circuit on the circuit board receives detection signal from the photo detector and turns off the said blue light LED die accordingly. With the implementation of the present invention, the active blue light leakage preventing LED structure turns off the blue light LED die when it reaches its usage life span limit thus avoiding damage to human from the massive release of blue light.
Abstract:
A light emitting device is provided to produce white light with a stable correlated color temperature and stable color coordinates. The light emitting device includes a blue LED chip and a yellow phosphor. The blue LED chip has a peak wavelength X slightly smaller than the peak wavelength Y of the phosphor such that when the light emitting device is subjected to a predetermined operating current, the phosphor decays due to thermal effect, and the LED chip has its emission spectrum red-shifted to substantially match with the excitation spectrum of the phosphor. At this time, the excitation ability of the LED chip is increased and causes an increase of yellow power output from the phosphor that substantially compensates a decrease of yellow light output caused by the phosphor.
Abstract:
A diffractive optical assembly includes an input coupler, an output coupler, and an image source. The output coupler is next to the input coupler. One of the input coupler and the output coupler has a most critical holographic optical element (HOE), and another one has a diffractive optical element (DOE). Bragg condition of the most critical HOE is more sensitive than Bragg condition of the DOE. The image source is configured to generate image light that is incident to the input coupler then propagates to the output coupler. The image light has incident angles to the input coupler and wavelengths corresponding to the incident angles. The wavelengths of the image light on the image source have a two-dimensional spatial distribution, such that relationships between the incident angles and the wavelengths of the image light comply with Bragg selectivity of the most critical HOE.
Abstract:
A holographic storage layer includes a reflective structure and photosensitive units. The reflective structure is a grid-shaped structure and includes cavities. The photosensitive units are disposed in the cavities, in which each of the photosensitive units is surrounded by the reflective structure. First openings and second openings are defined by the reflective structure, and the photosensitive units are exposed by the first openings and the second openings respectively.
Abstract:
A lamp structure of an adaptive streetlight includes a housing, a plurality of light sources, and a surface-structured diffusion plate. The surface-structured diffusion plate enables the lamp structure to provide a light pattern conforming to the curvature of the road to be illuminated or other sites of application, thus reducing not only the number of lamps or streetlights required for a curvy road section, but also the associated installation cost and power consumption. The lamp structure can enhance road users' safety and the safety of our daily lives by increasing the illuminance on a curvy road and other sites of application that have special requirements.
Abstract:
A holographic device includes a holographic storage device, a shearing interferometer, and an optical receiver. The holographic storage device is configured to provide a disk with a reading light beam to make the reading light beam become a diffracted light beam after the reading light beam is diffracted in the disk. The shearing interferometer is configured to receive the diffracted light beam and to transform the diffracted light beam into a first light beam and a second light beam. The optical receiver is configured to receive the first light beam and the second light beam provided by the shearing interferometer.
Abstract:
A holographic storage layer includes a reflective structure and photosensitive units. The reflective structure is a grid-shaped structure and includes cavities. The photosensitive units are disposed in the cavities, in which each of the photosensitive units is surrounded by the reflective structure. First openings and second openings are defined by the reflective structure, and the photosensitive units are exposed by the first openings and the second openings respectively.