Abstract:
Organic polymeric substrates, for example polyolefins such as polypropylene, can be made flame retardant by the incorporation of a synergistic mixture of (i) at least one low molecular weight sterically hindered alkoxyamine stabilizer, (ii) at least one high molecular weight sterically hindered alkoxyamine stabilizer and (iii) at least one conventional flame retardant selected from the group consisting of the organohalogen, phosphorus containing and melamine based flame retardants. The compositions of the invention combine good flame retardant properties with light stability and good mechanical properties. Polyolefin molded articles are stabilized against light, heat and oxygen and made flame retardant with the incorporation of at least one sterically hindered alkoxyamine and at least one conventional flame retardant, while allowing normally high levels of flame-retardant fillers to be greatly reduced or eliminated.
Abstract:
Polymer compositions are afforded flame retardancy with the incorporation of a combination of melamine polyphosphate and poly(m-phenylene methylphosphonate). The polymer compositions are for instance epoxy resins for prepegs, laminates and printed circuit boards. The epoxy resins are for example for coating electronic parts. The polymer compositions are also thermoplastics such as polyolefins or polystyrenics, useful as fibers, films or molded parts. The melamine polyphosphate may be of a fine particle size.
Abstract:
The present invention is directed to prepregs, laminates and printed circuit boards comprising fine particle size melamine cyanurate or a mixture of fine particle size melamine cyanurate and fine particle size melamine polyphosphate as a flame retardant. The present prepregs, laminates and printed circuit boards exhibit excellent flame retardancy as measured by UL 94 standards, low dielectric constant, good electrical, thermal and mechanical properties as well as good machinability, low density and a uniform appearance. The prepregs, laminates and printed circuit boards advantageously also contain certain phosphinate and/or diphosphinate flame retardants. The compositions are also advantageously free of halogen and antimony compounds.
Abstract:
Organic polymer substrates, for example polyolefins such as polypropylene, can be made flame retardant by the incorporation of a mixture of (i) at least one melamine based flame retardant and (ii) at least one flame retardant selected from the group consisting of the organohalogen and phosphorus containing flame retardants. Further optional flame retardants include antimony compounds and sterically hindered amines.
Abstract:
Organic polymeric substrates, for example polyolefins such as polypropylene, can be made flame retardant by the incorporation of a synergistic mixture of (i) at least one sterically hindered amine stabilizer, (ii) at least one conventional flame retardant selected from the group consisting of the organohalogen, phosphorus containing, isocyanurate and melamine based flame retardants and (iii) at least one acid scavenger. The compositions of the invention combine good flame retardant properties with light stability and good mechanical properties. Polyolefin molded articles are stabilized against light, heat and oxygen and made flame retardant with the incorporation of at least one sterically hindered amine and at least one conventional flame retardant, while allowing normally high levels of flame-retardant fillers to be greatly reduced or eliminated.
Abstract:
Polymer compositions comprising a polymeric substrate and an effective stabilizing amount of a synergistic mixture of a nano-scaled filler and at least one additive selected from the group consisting of the hindered amine light stabilizers are effectively stabilized against the deleterious effects of oxidative, thermal or light-induced degradation.
Abstract:
The instant invention pertains to a thermoplastic organic polymer containing a conventional flame retardant and a hydroxylamine ester, in particular a tetraalkyl piperidine hydroxylamine ester. Further aspects of the invention are the use of hydroxylamine esters as flame retardants and a method for improving flame retardancy of a thermoplastic organic polymer.