Abstract:
Certain aspects of the invention provides a transient liquid phase (TLP) bonding structure, including Ni based alloys and a TLP bonded layer formed by pack cementation on the Ni based alloys using a pack composition. In one embodiment, the pack composition includes 57 wt. % of aluminum oxide powder, 30 wt. % of Ti powder, 10 wt. % of Ni-50 wt. % Al alloy powder and 3 wt. % of ammonium chloride powder. The Ni based alloys may be Ni-20 wt. % Cr alloys. In certain embodiments, pack cementation is performed on the Ni based alloys under argon for an hour using the pack composition to form a coating. Then the structure is sonicated in acetone for 2 hours, and then annealed under vacuum at about 1200° C. for 2 days to form the TLP bonding structure, which has a uniform γ′ phase distribution with identical compositions and properties at its bonding regions.
Abstract:
Methods of forming three-dimensional metallic objects are provided. A metal oxide paste comprising metal oxide particles, a polymeric binder and an organic solvent is extruded through a tip to deposit sequential layers of the metal oxide paste on a substrate to form a three-dimensional metal oxide object. The three-dimensional metal oxide object is exposed to a reducing gas at a temperature and for a period of time sufficient to reduce and to sinter the metal oxide particles to form a three-dimensional metallic object. Depending upon the composition of the metal oxide paste, the three-dimensional metallic object may be composed of a single metal, a simple or complex metal-metal alloy, or a metal-ceramic composite.
Abstract:
A cobalt based superalloy and a method of producing the same. The superalloy includes a nominal composition comprising at least cobalt, aluminum, Z and vanadium, Z being at least one of tantalum and niobium, processed such that the superalloy comprises gamma and gamma-prime phases with stable gamma+gamma-prime microstructures.
Abstract:
A method of forming an aluminum alloy component including melting and solidifying an aluminum alloy, solution treating the aluminum alloy, and heat treating the aluminum alloy. The aluminum alloy includes scandium, zirconium, erbium, silicon, at least one of molybdenum and tungsten, manganese and the balance aluminum and incidental impurities. The concentration of the alloying elements, in atom %, is greater than 0.0 and less than or equal to 0.15 scandium, greater than 0.0 and less than or equal to 0.35 zirconium, greater than 0.0 and less than or equal to 0.15 erbium, greater than 0.0 and less than or equal to 0.2 silicon, greater than 0.0 and less or equal to 0.75 molybdenum when included, greater than 0.0 and less than or equal to 0.35 tungsten when included.
Abstract:
A penile prosthesis is disclosed that can alternate between an erect and flaccid state based on the shape memory properties of an exoskeleton that is responsive to increases and decreases in temperature. The exoskeleton consists of a shape memory alloy, such as nitinol, which in the erect configuration can radially expand and resist axial loads and buckling forces during coitus. The shape memory alloy is temperature-tuned to undergo a change to an erect state under external application of heat and can revert to a flaccid state with cooling below resting penile temperature.