Abstract:
An observation apparatus includes an imager, a light source unit, an image processor and a light intensity adjusting section. The imager includes types of elements which generate a first signal when the elements receive light included in a sensitivity region. The light source unit includes light sources to emit narrow spectrum light, wavelengths of the light being different from one another and being set so that at least one of the wavelengths is included in each of the sensitivity regions. The image processor generates display data indicating a color image on the basis of the image data. The light intensity adjusting section separately adjusts respective light intensity of the light sources.
Abstract:
A light source apparatus includes a primary light source that emits primary light, a diffusing member that diffuses and converts the primary light into diffused light, a reflection portion that regularly reflects or diffuse-reflects and converts the diffused light into reflected light, and an emission portion that emits the reflected light to an outside. A portion of the primary light is converted in an order of the diffused light and the reflected light and emitted to the outside from the emission portion in a state of the reflected light.
Abstract:
An optical connection module for an endoscope includes: an optical fiber having a fiber end surface and configured to guide a part of emitted light emitted from a light source and incident on the fiber end surface; a ferrule having a ferrule end surface with an opening of a through-hole into which the optical fiber is inserted, the ferrule including a scatterer configured to scatter, in an inside of the ferrule, a part of the emitted light incident on the ferrule end surface, the ferrule being configured to emit scattered light generated by scattering from a side surface; and an optical sensor arranged in the periphery of the side surface of the ferrule and configured to receive the scattered light.
Abstract:
A first light source module includes a light source-side connection hole to which a irradiation-side connector of a irradiation module is mechanically detachably attached. The light source-side connection hole is made common to the first irradiation-side connector, which is mounted in the first irradiation module, and the second irradiation-side connector, which is mounted in the second irradiation module, such that the light source-side connection hole is connectable to the first irradiation-side connector and the second irradiation-side connector.
Abstract:
An image forming apparatus includes lasers to respectively emit lights having central wavelengths different from each other, an imager to output an image signal upon receiving light from a subject, a laser wavelength-specific image information acquirer to acquire, from the image signal output from the imager, pieces of laser wavelength-specific image information, and an image former to combine the pieces of laser wavelength-specific image information supplied from the laser wavelength-specific image information acquirer, so as to form an observation image in each mode included in the observation modes.
Abstract:
A medical image formation apparatus includes laser emitting elements which emit laser light rays different in wavelength, an image selection circuit to select a kind of observation image, a light source controller which controls the laser emitting elements, in accordance with an observation mode corresponding to the selected kind, an imager which images return light ray from an observation target and then outputs the return light ray as an image signal, and an image processor which forms the observation images. A first laser emitting group is controlled when the kind of selected observation image is a first observation image. A second laser emitting group is controlled when the kind of selected observation image is a second observation image. The first laser emitting group and the second laser emitting group include a first common laser emitting element.
Abstract:
An illumination apparatus includes a light source unit which emits primary light, and an optical unit which functions when the primary light emitted from the light source unit is applied to the optical unit. The optical unit includes a reducing portion which is directly provided in a illumination light emitting portion or provided frontward to part of the illumination light emitting portion and which reduces the density of the primary light as the illumination light emitted from the illumination light emitting portion.
Abstract:
An insertion module inserted into inside of an observed object includes a light-source light emitting module, around its distal end, configured to emitted light from a light source and a detector, provided close to the distal end, configured to detect a light quantity of incident visible light. A controller controls the light source such that a null signal is transmitted from the light-source light emitting module, the null signal being characteristic for detection of the position of the distal end and obtained by making at least light of a predetermined wavelength region have an absence of visible light. The detector performs detecting operation in a period in which the null signal is transmitted. A determination module performs determination relating to the position of the distal end, based on detection information outputted by the detector.
Abstract:
A light source apparatus includes a light conversion unit converting primary light into secondary light. The light conversion unit includes a light conversion member, a holder and a reflection member. The holder includes an incidence portion through which the primary light enters and an exit portion through which at least part of the secondary light exits in a direction crossing an optical axis of the primary light. The light conversion member is arranged on the optical axis of the primary light. Part of the secondary light allowed to exit from the light conversion member in a direction different from a direction toward the exit portion is reflected by the reflection member and exited from the exit portion. The ratio of reentering to the light conversion member is reduced.
Abstract:
The wavelength conversion member includes a plurality of fluorescent members that absorb the excitation light and emit fluorescent light having a peak wavelength different from the peak wavelength of the excitation light. The wavelength conversion member has a surface irradiated with excitation light that faces an excitation light emitting surface of the excitation light source. The optical axis passes the center of the surface irradiated with excitation light. The plurality of fluorescent members are arranged in a divisional manner at such proportions that a circumferential area ratio, which is defined as the ratio of area occupied by each of the fluorescent members in a concentric annular region having a center located at the center of the surface irradiated with excitation light on the surface irradiated with excitation light of the wavelength conversion member, is substantially constant irrespective of the radius of the concentric annular region.