Abstract:
The present invention regards an apparatus for selectively and accurately deploying one or more sequentially positioned medical appliances from a portable medical device. The apparatus includes a body having a channel, a string passing through the channel, and a mechanism for moving the string predetermined distances to deploy medical appliances. The medical appliances may be, but are not limited to, ligation bands.
Abstract:
An improved distal end for a ligating band dispenser having a transverse groove or ridge profile that promotes rolling of the bands. In one embodiment, the ligating bands and the transverse grooves or ridges are dimensioned such that the width of the bands when stretched on the support surface is substantially the same as the pitch of the transverse grooves or ridges. Having the width of the bands when stretched on the support surface be substantially the same as or less than the pitch of the transverse grooves or ridges allows the bands to fit within the grooves, which helps insure that the bands are sufficiently held back by the ridge crests to induce a rolling action. In addition, the transverse grooves or ridges may also be dimensioned such that the height of the ridge crests is sufficiently high to insure that the bands are sufficiently held back by the ridge crests to induce a rolling action.
Abstract:
An articulation mechanism for a surgical instrument includes an articulation assembly, a plurality of cables, and a trigger. The cables are coupled to the articulation assembly at a proximal end thereof and extend distally therefrom. The cables are configured to engage an end effector assembly of the surgical instrument at a distal end thereof. The trigger is coupled to the articulation assembly and is selectively moveable from a shipping position to a use position. In the shipping position, the cables are substantially un-tensioned. In the use position, the cables are disposed in an initial tensioned position. In the use position, the trigger is moveable between an unlocked position and a locked position. In the unlocked position, the cables are selectively tensionable to articulate the end effector assembly. In the locked position, the tensions on the cables are maintained to lock the end effector assembly in position.
Abstract:
An improved distal end for a ligating band dispenser having a transverse groove or ridge profile that promotes rolling of the bands. In one embodiment, the ligating bands and the transverse grooves or ridges are dimensioned such that the width of the bands when stretched on the support surface is substantially the same as the pitch of the transverse grooves or ridges. In another embodiment, the ligating bands and the transverse grooves or ridges are dimensioned such that the width of the bands when stretched on the support surface is less than the pitch of the transverse grooves or ridges. Having the width of the bands when stretched on the support surface be substantially the same as or less than the pitch of the transverse grooves or ridges allows the bands to fit within the grooves, which helps insure that the bands are sufficiently held back by the ridge crests to induce a rolling action. In addition, the transverse grooves or ridges may also be dimensioned such that the height of the ridge crests is sufficiently high to insure that the bands are sufficiently held back by the ridge crests to induce a rolling action.
Abstract:
The present invention regards system and apparatus for selectively and accurately deploying one or more sequentially positioned medical appliances from a portable medical device. The apparatus includes a body having a channel, a string passing through the channel, and a mechanism for moving the string a predetermined first distance to deploy a first of the medical appliances and for moving the string a predetermined second distance to deploy a second of the medical appliances. The medical appliances may be, but are not limited to, ligating bands.
Abstract:
A digital data storage apparatus has primary, secondary and backing storage elements characterized by respectively longer access times. A level detector signals when the quantity of data in the secondary store exceeds a threshold amount. A data migrator responds by moving selected data files from the secondary store to the backing store. The apparatus also includes a baseline back-up element that stores archive copies of a set of selected data files. A full back-up element stores archive copies of those files that, (1) were originally copied to the baseline back-up set but have since changed, or (2) are not otherwise within the baseline back-up set. For those files which were originally copied to the baseline back-up set and which have not changed, the full back-up element stores pointers indicating locations of the respective files in the baseline back-up set.