Abstract:
An electrophoretic or chromatographic separation capillary containing a fluid or gel defines a bore therein through which a sample migrates and separates into components. The tube has a side wall defining a passage therein. A substance is introduced into the capillary through the pasage by means of gravity, pressure or electroosmosis. The substance introduced changes the electroosmotic flow rate of the fluid in the capillary tube. The electroosmotic flow rate of the fluid in the capillary tube can be monitored by introducing a compound through the passage and detecting the concentration of the compound. Information on the flow rate can be used in a feedback action to control the flow rate, such as to keep it constant.
Abstract:
An on-column derivatization scheme where a liquid or solid labeling reagent is provided in a capillary to react chemically with a sample in order to label the sample. Electrophoretic separation may be carried out immediately thereafter to simplify the derivatization, separation and detection process. By localizing the labeling process to a small area within the capillary, fast kinetics and high reaction yield are achieved.
Abstract:
In the capillary electrophoretic system, the components of a sample to be separated and detected are labelled by a radioactive material which emits gamma rays or beta particles with energy high enough to penetrate the electrolyte and the capillary tube. A semiconductor detector outside the tube and placed adjacent to the tube detects the gamma rays or beta particles in order to detect the presence of the components of the sample. A weaker radio-label may also be used in conjunction with scintillating material which is introduced together with the sample into the tube or through a different tube. Alternatively, the scintillating material may be placed inside the tube or made a part of the tube. The scintillating material emits light in response to radiation from the radio labels on the components of the sample to enable detection of the component. The power supply for driving the electrolyte in the tube is controlled by a control system in response to the detector signal to reduce the voltage, turn the power supply off or apply a voltage of opposite polarity in order to increase the residence time of a particular component which has been detected or to make it pass the detector region two or more times. By increasing the residence time, the sensitivity of detection is increased.
Abstract:
An on-column conductivity detector for microcolumn electrokinetic separation systems is disclosed. The detector is based on the column itself, the column having a largest internal cross-sectional dimension of 500 microns or less and includes one or more sensing electrodes positioned directly upon or immediately adjacent to (i.e. contiguous with) the wall of the column into communication with the analyte stream so as to present no dead volume and no increase in cross-sectional area to the fluid flow. In one embodiment, this conductivity detector has a single on-column electrode, located immediately adjacent to the exit end of the column. In a preferred embodiment, this conductivity detector has one or more pairs of on-column sensing electrodes and these paired electrodes are located directly across from each other on the microcolumn, to minimize potential across the electrodes and concomitant electrochemical reactions.
Abstract:
Surface induce dissociation (SID) in a reflectron tandem time-of-flight mass spectrometer is demonstrated using a movable "in-line" SID surface in the reflectron lens. For collisions under 100 eV, SID spectra are measured with a resolution of .about.65 (FWHM) with dissociation efficiencies of 7-15% obtained for most small organic ions. For larger peptide ions (m/z>1200) formed by laser desorption, efficiencies as high as 30-50% are obtained. Surface collisions of polycyclic aromatic hydrocarbon ions can be made to produce abundant pick-up of large, surface-adsorbed species. Attachment of C.sub.1 H.sub.n -C.sub.6 H.sub.n to naphthalene and phenanthrene ions occurs with collision energies between 40-160 eV. Formation efficiency for these ion-adsorbate attachment reactions can be as high as 0.8%. Surface collisions produce no measureable shift in our flight times nor distortion in peak shapes for these species; this indicates the reaction time on the surface must be less thant 160 ns. Theoretical calculations show that these reactions are direct (
Abstract:
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of delivering a compound, a composition, and the like.
Abstract:
Embodiments disclosed herein relate to methods, devices, and computer systems thereof for reducing stomach volume in a subject. In certain embodiments, a subject receives a stomach-volume-reducing device that optionally includes at least one reservoir configured to release at least one appetite suppressant. In an embodiment, the stomach-volume-reducing device is responsive to one or more environmental conditions of the subject, for example, pH or chemical chemicals in the stomach of the subject. In an embodiment, the stomach-volume-reducing device controls hunger in the subject.
Abstract:
Embodiments disclosed herein relate to methods, devices, and computer systems thereof for reducing stomach volume in a subject. In certain embodiments, a subject receives a stomach-volume-reducing device that optionally includes at least one reservoir configured to release at least one appetite suppressant. In an embodiment, the stomach-volume-reducing device is responsive to one or more environmental conditions of the subject, for example, pH or chemical chemicals in the stomach of the subject. In an embodiment, the stomach-volume-reducing device controls hunger in the subject.
Abstract:
Embodiments disclosed herein relate to methods, devices, and computer systems thereof for reducing stomach volume in a subject. In certain embodiments, a subject receives a stomach-volume-reducing device that optionally includes at least one reservoir configured to release at least one appetite suppressant. In an embodiment, the stomach-volume-reducing device is responsive to one or more environmental conditions of the subject, for example, pH or chemical chemicals in the stomach of the subject. In an embodiment, the stomach-volume-reducing device controls hunger in the subject.