Abstract:
A phaser (22) includes a housing (44), a rotor (42), a phaser control valve (36) and a regulated pressure control system (RPCS). The phaser control valve (36) directs fluid to shift the relative angular position of the rotor relative to the housing (44). The RPCS has a controller, which provides a set point based on engine parameters. A signal is then produced based on the set point and is sent to the direct control pressure regulator valve. (38) The direct control pressure regulator valve (38) has a supply port (5) and a control port (5), where the supply port (5) receives a supply fluid pressure from a source and regulates the pressure based on a signal, to a control pressure. The control pressure biases an end of the spool of the phase control valve (36) against a spring (66), such that the relative angular position of the housing (44) and the rotor (42) is shifted. A method of controlling a phaser (22) is also disclosed.
Abstract:
A variable camshaft timing system comprising a camshaft (36) with a vane (2) secured to the camshaft for rotation with the camshaft but not for oscillation with respect to the camshaft. The vane has a circumferentially extending plurality of lobes (20, 22, 24) projecting radially outwardly therefrom and is surrounded by an annular housing (28) that has a corresponding plurality of recesses (30, 32, 34) each of which receives one of the lobes and has a circumferential extent greater than the circumferential extent of the lobe received therein to permit oscillation of the housing relative to the camshaft. Oscillation of the housing relative to the camshaft is actuated by pressurized engine oil in each of the recesses on opposed sides of the lobe therein, the oil pressure in such recess being preferably derived in part from a torque pulse in the camshaft as it rotates during its operation. An annular locking plate (50) is positioned coaxially with the camshaft and the annular housing and is moveable relative to the annular housing along a longitudinal central axis of the camshaft between a first position and a second position. The locking plate is biased by a spring (52) toward its first position and is urged away from its first position toward its second position by engine oil pressure when engine oil pressure is sufficiently high to overcome the spring biasing force.
Abstract:
A hydraulic tensioner having a piston slidably fitted in a bore in a housing forming a fluid chamber. The piston is biased in a protruding direction by a spring and fluid. A check valve permits flow of fluid into the fluid chamber and prevents flow of fluid in the reverse direction. A pressure relief valve is provided in the fluid chamber. The pressure relief valve works with a vent disc having two separate vent paths. The pressure relief valve and vent disc provide controlled venting of fluid from the fluid chamber during both conventional operation and during periods of excessive pressure and thus, prevent collapse of the tensioner.
Abstract:
A hydraulic tensioner having a pawl-style rack member. The rack member is located in a groove in a bore in the tensioner housing. The tensioner piston has grooves along its exterior surface that correspond to the wedges or grooves in the pawl rack member and prevent the piston from being pushed inward. The pawl rack member may be a pair of pawls located in the tensioner bore. A flexible tab on the upper portion of the rack member contacts a groove on the upper portion of the piston to retain the piston in place for shipping.
Abstract:
A hydraulic tensioner having a hydraulically actuated rack member. A pair of check valves permit fluid to flow from an external source of pressurized fluid into a fluid chamber. The two check valves form a substantially fluid tight chamber in order to provide sufficient pressure to prevent the piston from retracting upon deenergization of the source of pressurized fluid.
Abstract:
A hydraulic tensioner having an external rack member. The rack member has an extending member at its upper end that contacts wedges or grooves along the exterior of the piston to limit backdrive or backlash of the piston. The rack member has an end member at its lower end that is located in a groove in the tensioner housing. The rack member has a plurality of portions that are held together by a garter spring to form a single cylindrical piece.
Abstract:
A hydraulic tensioner includes a cylindrical center member or mass to counteract the resonance of the piston. The center member is located between a pair of piston springs inside the fluid chamber. The mass of the center member is selected, along with the spring rates of the piston springs, so that the resonant frequency of the center member matches the resonant frequency of the piston and timing drive. Since the center member moves in the opposite direction from the piston, the center member counteracts or damps the movement of the piston at resonant frequencies.
Abstract:
A mechanical friction tensioner for power transmission chains, such as engine timing chains. The tensioner provides the advantages of a conventional hydraulic tensioner, but eliminates the hydraulic pressure system by use of spring loaded wedge-shaped blocks and friction damping. The mechanical tensioner has a wedge-shaped plunger positioned within a bore in the tensioner housing. The plunger is biased outward by two spring loaded wedge-shaped blocks and a return spring. As the plunger moves inward, the wedge-shaped blocks are pushed in towards the plunger by the springs to provide friction damping.
Abstract:
A hydraulic tensioner for a wrapped power transmission device designed to minimize the amount of air present in the pressure chamber. The hydraulic tensioner includes a combination pressure relief-check valve for use with a hollow piston pressure chamber containing a spring within the pressure chamber to bias the piston outward from the bore. The valve housing is designed to reduce the volume of fluid contained within the pressure chamber minimizing the amount of air which may become trapped in the pressure chamber thus improving the performance of the tensioner.
Abstract:
A hydraulic tensioner for operation of a dual chain system including at least one piston maintaining force on two chain guide arms. One embodiment includes an inner and outer piston with a first spring within the bore and a second spring on top of the housing, where each piston contacts a chain guide arm. A second embodiment includes one piston with a fulcrum arm contacting the chain guide arms. A third embodiment includes two pistons arranged side-by-side sharing the same chamber and check valve assembly.