Abstract:
A method of optically detecting the presence of a bimodal droplet size distribution in the atmosphere. The method comprising monitoring statistical fluctuations in a backscattered signal received from a series of pulsed laser light beams directed into a cloud and analyzing the statistics of the fluctuations of the backscattered signals to identify the presence of larger diameter droplets.
Abstract:
A system includes an optical ice detection (OID) sub-system optically coupled to light collection optics. A water vapor differential absorption LIDAR (WV-DIAL) sub-system is optically coupled to the OID laser source or light collection optics. The OID sub-system and the WV-DIAL sub-system share at least a portion of an optical path of the light source or through the light collection optics. The OID sub-system, the WV-DIAL sub-system, and the illumination and light collection optics can all be aboard an aircraft. A method includes using a set of illumination and light collection optics aboard an aircraft to obtain data indicative of optical ice detection (OID) and water vapor differential absorption LIDAR (WV-DIAL), e.g. to detect contrail forming conditions for the aircraft and/or predict persistence of contrails from the aircraft.
Abstract:
Apparatus and associated methods relate to determining metrics of a cloud atmosphere using time difference measurements. A light projector projects a pulse of light into a cloud atmosphere, and a light sensor detects a portion of the projected pulse of light backscattered by the cloud atmosphere. A backscatter coefficient is calculated based on peak amplitude of the detected portion. An optical extinction coefficient is calculated based on a time difference between a peak time and a post-peak time, which correspond to times at which the peak amplitude of the detected portion occurs and at which the detected portion equals or crosses a sub-peak threshold, respectively. In some embodiments, a logarithm amplifier is used to facilitate processing of signals of widely varying amplitudes. In some embodiments, the sub-peak threshold is calculated as a fraction of the peak amplitude of the detected portion.
Abstract:
Apparatus and associated methods relate to predicting failure and/or estimating remaining useful life of an air-data-probe heater. Failure is predicted or useful life is estimated based on an electrical metric of the electrical operating power provided to a resistive heating element of the air-data-probe heater. The electrical metric of the air data probe heater is one or more of: i) phase relation between voltage across the resistive heating element and leakage current, which is conducted from the resistive heating element to a conductive sheath surrounding the resistive heating element; ii) a time-domain profile of leakage current through the heating element insulation during a full power cycle; and/or iii) high-frequency components of the electrical current conducted by the resistive heating element and/or the voltage across the resistive heating element.
Abstract:
Apparatus and associated methods relate to determining metrics of a cloud atmosphere using time difference measurements. A light projector projects a pulse of light into a cloud atmosphere, and a light sensor detects a portion of the projected pulse of light backscattered by the cloud atmosphere. A backscatter coefficient is calculated based on peak amplitude of the detected portion. An optical extinction coefficient is calculated based on a time difference between a peak time and a post-peak time, which correspond to times at which the peak amplitude of the detected portion occurs and at which the detected portion equals or crosses a sub-peak threshold, respectively. In some embodiments, a logarithm amplifier is used to facilitate processing of signals of widely varying amplitudes. In some embodiments, the sub-peak threshold is calculated as a fraction of the peak amplitude of the detected portion.
Abstract:
Apparatus and associated methods relate to determining, based on a detected portion of a projected pulse of quasi-optical energy backscattered by water particles within a divergent projection volume of a cloud atmosphere, properties of the backscattering water particles. The pulse of quasi-optical energy is projected into the divergent projection volume of the cloud atmosphere. The divergent projection volume is defined by an axis of projection and an angle of projection about the axis of projection. The portion of the projected pulse of optical energy backscattered by water particles within the divergent projection volume of the cloud atmosphere is received and detected. Various properties of the backscattering water particles, which can be determined from the detected portion of the projected pulse backscattered by water particles can include particle density and/or particle size.
Abstract:
Apparatus and associated methods relate to determining a size and/or density of Super-cooled Large Droplets (SLDs) in a cloud atmosphere by comparing detected optical signals reflected from small and large sampling volumes of a cloud atmosphere. In some embodiments, an optical pulse is generated and divergently projected from a first optical fiber. A collimating lens is aligned within the divergently projected optical pulse collimating a portion thereof. The collimated and uncollimated portions of the optical pulse are projected into the small and large sampling volumes of the cloud atmosphere, respectively. The ratio of the collimated to the uncollimated portions can be optically controlled. Signals corresponding to optical pulses having different collimated/uncollimated ratios are backscattered by the cloud atmosphere, detected and compared to one another. A processor is configured to calculate, based on scintillation spike differences between the optical pulses of different collimated/uncollimated ratios, a size and/or density of SLDs.
Abstract:
In one example, a method includes receiving, over an aircraft data communications bus, a plurality of non-pneumatic inputs corresponding to aircraft operational parameters. The method further includes processing the plurality of non-pneumatic inputs through an artificial intelligence network to generate an air data output value, and outputting the air data output value to a consuming system for use when a pneumatic-based air data output value is determined to be unreliable.
Abstract:
Apparatus and associated methods relate to determining a size and/or density of Super-cooled Large Droplets (SLDs) in a cloud atmosphere by comparing detected optical signals reflected from small and large sampling volumes of a cloud atmosphere. In some embodiments, an optical pulse is generated and divergently projected from a first optical fiber. A collimating lens is aligned within the divergently projected optical pulse collimating a portion thereof. The collimated and uncollimated portions of the optical pulse are projected into the small and large sampling volumes of the cloud atmosphere, respectively. The ratio of the collimated to the uncollimated portions can be optically controlled. Signals corresponding to optical pulses having different collimated/uncollimated ratios are backscattered by the cloud atmosphere, detected and compared to one another. A processor is configured to calculate, based on scintillation spike differences between the optical pulses of different collimated/uncollimated ratios, a size and/or density of SLDs.
Abstract:
Apparatus and associated methods relate to determining, based on a detected portion of a projected pulse of quasi-optical energy backscattered by water particles within a divergent projection volume of a cloud atmosphere, properties of the backscattering water particles. The pulse of quasi-optical energy is projected into the divergent projection volume of the cloud atmosphere. The divergent projection volume is defined by an axis of projection and an angle of projection about the axis of projection. The portion of the projected pulse of optical energy backscattered by water particles within the divergent projection volume of the cloud atmosphere is received and detected. Various properties of the backscattering water particles, which can be determined from the detected portion of the projected pulse backscattered by water particles can include particle density and/or particle size.