Abstract:
A composition includes specific amounts of a poly(butylene terephthalate), a reinforcing filler, and a polycarbonate that includes a copolyestercarbonate and a polycarbonate-polydiorganosiloxane block copolymer. The copolyestercarbonate includes aliphatic ester groups. The composition, which exhibits a desirable balance of melt flow and ductility, is especially useful for forming thin plastic parts of consumer electronic devices, including mobile phones.
Abstract:
Disclosed herein is a method of reducing the amount of antimony flame retardant compound in a flame retardant composition which comprises using calcium oxide or a combination of talc and calcium oxide as a filler in the composition, wherein the composition comprises specific amounts of a polyester, a brominated flame retardant compound, an antimony flame retardant compound, and a filler comprising calcium oxide or a combination of talc and calcium oxide. Also disclosed are compositions prepared by such a method and articles derived therefrom.
Abstract:
A polypropylene composition includes (A) a polypropylene, (B1) a first copolymer of ethylene and α-olefin having a density of 0.891 to 0.912 g/cm3, and (B2) a second copolymer of ethylene and α-olefin having a density in the range of 0.859 to 0.881 g/cm3, wherein the amount of (A) the polypropylene is in the range from 71 to 87 wt % based on the total amount of the polymer composition, and wherein the ratio between the amount of the (B2) second copolymer of ethylene and α-olefin and the amount of the (B1) first copolymer of ethylene and α-olefin is in the range from 3.8 to 1.0. The polypropylene composition has improved stress whitening resistance. A battery case including the polypropylene composition is also disclosed.
Abstract:
The invention relates to composition comprising (A) a propylene-based polymer, (B1) a first elastomer of ethylene and α-olefin comonomer having 4 to 10 carbon atoms, (B2) a second elastomer of ethylene and α-olefin comonomer having 4 to 10 carbon atoms and (C) an inorganic filler, wherein (B1) the first elastomer has a density of 0.850 to 0.890 g/cm3 and a melt flow index of 5 to 50 dg/min measured in accordance with ASTM D1238 using a 2.16 kg weight and at a temperature of 190° C., wherein (B2) the second elastomer has a density of 0.850 to 0.890 g/cm3 and a melt flow index of 0.55 to 4 dg/min measured in accordance with ASTM D1238 using a 2.16 kg weight and at a temperature of 190° C., wherein the total amount of (B1) the first elastomer and (B2) the second elastomer is 2 to 30 wt % based on the total composition, wherein the amount of (C) the inorganic filler is 0.1 to 30 wt % based on the total composition.
Abstract:
This disclosure relates to halogen-free flame retardant polycarbonate/thermoplastic polyester molding compositions with improved mechanical properties and increased polyester loading level. More particularly, the disclosure relates to halogen-free polycarbonate/thermoplastic polyester resin alloys with polymeric phosphorus flame retardant additive and siloxane impact modifier. Also included are methods for preparing such compositions and articles there from.
Abstract:
A composition includes specific amounts of an aromatic polycarbonate, a polycarbonate-polysiloxane block copolymer, a poly(alkylene terephthalate), a flame retardant, and a drip retardant. The flame retardant includes an oligomeric or polymeric bis(aryloxy)phosphazene in combination with an organophosphine oxide, an oligomeric or polymeric aromatic phosphonate, or a combination thereof. The composition is useful for fabricating parts for electrical and electronic devices.
Abstract:
A polyester composition includes specific amounts of a poly(alkylene terephthalate), an impact modifier, glass fibers, and a flame retardant. The impact modifier includes a polyolefin elastomer, optionally in combination with a thermoplastic polyester elastomer. The flame retardant includes a metal dialkylphosphinate, a melamine based flame retardant, and a flame retardant synergist that can be an organophosphine oxide, an oligomeric or polymeric bis(phenoxy)phosphazene, an organophosphate ester, or a combination thereof. The composition is useful for fabricating parts for electrical and electronic devices.
Abstract:
Disclosed herein are flame retardant polyalkylene terephthalate compositions that employ reduced amounts of organo-halide as flame retardants (FR), wherein the composition comprises: (a) a polyalkylene terephthalate; (b) an organo-bromo flame retardant (FR) agent; (c) an antimony synergist; (d) an organo phosphate ester phosphorous flame retardant compound; (e) talc; and (f) sodium or potassium carbonate. In addition to being characterized by the presence of a phosphorous containing flame retardant compound and sodium or potassium carbonate, the compositions of the present inventions contain reduced amounts of organo-bromo FR agent and/or antimony FR synergist and have excellent flame retardant properties.
Abstract:
Disclosed herein is a method of reducing the amount of antimony flame retardant compound in a flame retardant composition which comprises using calcium oxide or a combination of talc and calcium oxide as a filler in the composition, wherein the composition comprises specific amounts of a polyester, a brominated flame retardant compound, an antimony flame retardant compound, and a filler comprising calcium oxide or a combination of talc and calcium oxide. Also disclosed are compositions prepared by such a method and articles derived therefrom.