Abstract:
A health care band operably attaches a biosensor to a patient. The biosensor includes one or more sensors for collecting vitals of a patient and a wireless transmitter that is configured to communicate with an EMR network that stores and maintains an EMR of the patient. The biosensor stores a unique identification associated with the patient's EMR such that vitals measured by the biosensor may be transmitted with the patient's unique identification for storage in the patient's EMR. The sensors in the biosensor may include a thermometer, motion detector/accelerometer, pulse detector and oximeter, etc. In an embodiment, one of the sensors in the biosensor includes a photoplethysmography (PPG) based sensor that may be configured to continuously or periodically measure a patient's vitals, such as heart rate, pulse, blood oxygen levels, blood glucose or insulin levels, or other blood analytics in vitro.
Abstract:
A health care band operably attaches a biosensor to a patient. The biosensor includes one or more sensors for collecting vitals of a patient and a wireless transmitter that is configured to communicate with an EMR network that stores and maintains an EMR of the patient. The biosensor stores a unique identification associated with the patient's EMR such that vitals measured by the biosensor may be transmitted with the patient's unique identification for storage in the patient's EMR. The sensors in the biosensor may include a thermometer, motion detector/accelerometer, pulse detector and oximeter, etc. In an embodiment, one of the sensors in the biosensor includes a photoplethysmography (PPG) based sensor that may be configured to continuously or periodically measure a patient's vitals, such as heart rate, pulse, blood oxygen levels, blood glucose or insulin levels, or other blood analytics in vitro.
Abstract:
A photoplethysmography (PPG) circuit obtains PPG signals at a plurality of wavelengths of light reflected from tissue of a user. A processing device generates parameters using the PPG signals to determine a glucose level in blood flow of the user. The parameters include one or more ratio values obtained using the plurality of PPG signals; a phase delay between the plurality of PPG signals; a correlation of phase shape between the plurality of PPG signals or a periodicity of one or more of the plurality of PPG signals.
Abstract:
A biosensor unit is coupled to a user device and may communicate with the user device over a short range wireless or wired interface. The biosensor unit includes an optical sensor used to obtain a plurality of PPG signals. The PPG signals are used to obtain an oxygen saturation level, a heart rate and a respiration rate of a user. The PPG signal may also be used to obtain a nitric oxide (NO) level and glucose level of the user. The user device may generate a graphical user interface to display the biosensor data to a user.
Abstract:
A gantry system comprises a bearing assembly including at least two rows of ball bearings, an inner race portion including an inner race and a first outer peripheral face and an outer race portion including an outer race and a second outer peripheral face. A first mounting plate is mounted to the first outer peripheral face of the inner race portion. The first mounting plate has a substantial portion that is relatively flat where it contacts the first outer peripheral face. In addition, the first mounting plate is relatively thin in comparison to the inner race portion such that the first mounting plate conforms to the surface of the inner race portion.
Abstract:
A remote device includes a biosensor interface that is configured to collect biosensor data from an integrated biosensor or by receiving biosensor data from one or more external biosensors or other types of sensors either through a wireless connection or a wired connection. The remote device communicates with a television to display the biosensor data on the television. The television may communicate biosensor data to third party, such as a pharmacy or physician's office or service provider.
Abstract:
A photoplethysmography (PPG) circuit obtains PPG signals at a plurality of wavelengths of light reflected from tissue of a user. A processing device generates parameters using the PPG signals to screen the user for an infection, such as sepsis, influenza and/or COVID-19. The processing device may also determine a severity level of the infection and a confidence level in the determination. The parameters may include a measurement of nitric oxide (NO) level, respiration rate, heart rate and/or oxygen saturation.
Abstract:
A biosensor includes an optical sensor circuit that emits light directed at skin tissue of a patient at a plurality of wavelengths. A first and second spectral response of light reflected from the tissue is obtained around a first wavelength in a UV range and a second wavelength in an IR range. A measurement of nitric oxide (NO) is then determined from the spectral responses. A risk of septic condition is obtained using the measurement of NO.
Abstract:
A biosensor for monitoring nitric oxide (NO) of a patient in vivo, includes a PPG circuit configured to obtain a first spectral response for light reflected at a first wavelength from skin tissue of the patient, wherein the first wavelength has a high absorption coefficient for nitric oxide in arterial blood flow and obtain a second spectral response for light reflected at a second wavelength from skin tissue of the patient, wherein the second wavelength has a low absorption coefficient for nitric oxide in arterial blood flow. The biosensor further includes a processing circuit configured to determine an NO measurement value for nitric oxide using the first spectral response and the second spectral response and obtain an adjusted measurement value of nitric oxide by compensating the NO measurement value using a measurement value for at least a first species of hemoglobin.
Abstract:
A biosensor includes a PPG circuit that emits light directed at living tissue at a plurality of wavelengths. A first and second spectral response of light reflected from the tissue is obtained around a first wavelength and a second wavelength. Using absorption coefficients for substances at the plurality of wavelengths, concentration levels of a plurality of substances such as Nitric Oxide may then be determined from the spectral responses.