Abstract:
A neural network can be used to determine edit operations for normalizing an electronic communication. For example, an electronic representation of multiple characters that form a noncanonical communication can be received. It can be determined that the noncanonical communication is mapped to at least two canonical terms in a database. A recurrent neural network can be used to determine one or more edit operations usable to convert the noncanonical communication into a normalized version of the noncanonical communication. In some examples, the one or more edit operations can include inserting a character into the noncanonical communication, deleting the character from the noncanonical communication, or replacing the character with another character in the noncanonical communication. The noncanonical communication can be transformed into the normalized version of the noncanonical communication by performing the one or more edit operations.
Abstract:
A system, method, and computer-program product includes identifying a plurality of code synthesis items for a target programming language, generating a code synthesis prompt based on a first sampling of the plurality of code synthesis items, synthesizing, via a large language model, a plurality of raw code segments using the code synthesis prompt, executing the plurality of raw code segments with a code interpreter associated with the target programming language, determining one or more valid code segments of the plurality of raw code segments that the code interpreter successfully executed, aggregating, via a second sampling, the one or more valid code segments into one or more validated code synthesis training samples, and training a code generation model using the one or more validated code synthesis training samples. User interfaces may be provided to allow target coding tasks to be specified via text or speech.
Abstract:
A system trains a classification model. Text windows are defined from tokens based on a window size. A network model including a transformer network is trained with the text windows to define classification information. A first accuracy value is computed. (A) The window size is reduced using a predefined reduction factor value. (B) Second text windows are defined based on the reduced window size. (C) Retrain the network model with the second text windows to define classification information. (D) A second accuracy value is computed. (E) An accuracy reduction value is computed from the second accuracy value relative to the first accuracy value. When the computed accuracy reduction value is ≥an accuracy reduction tolerance value, repeat (A)-(E) until the accuracy reduction value is
Abstract:
Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.
Abstract:
Convolutional neural networks can be visualized. For example, a graphical user interface (GUI) can include a matrix of symbols indicating feature-map values that represent a likelihood of a particular feature being present or absent in an input to a convolutional neural network. The GUI can also include a node-link diagram representing a feed forward neural network that forms part of the convolutional neural network. The node-link diagram can include a first row of symbols representing an input layer to the feed forward neural network, a second row of symbols representing a hidden layer of the feed forward neural network, and a third row of symbols representing an output layer of the feed forward neural network. Lines between the rows of symbols can represent connections between nodes in the input layer, the hidden layer, and the output layer of the feed forward neural network.
Abstract:
Electronic communications can be normalized using a neural network. For example, a noncanonical communication that includes multiple terms can be received. The noncanonical communication can be preprocessed by (I) generating a vector including multiple characters from a term of the multiple terms; and (II) repeating a substring of the term in the vector such that a last character of the substring is positioned in a last position in the vector. The vector can be transmitted to a neural network configured to receive the vector and generate multiple probabilities based on the vector. A normalized version of the noncanonical communication can be determined using one or more of the multiple probabilities generated by the neural network. Whether the normalized version of the noncanonical communication should be outputted can also be determined using at least one of the multiple probabilities generated by the neural network.