Abstract:
A method of driving a display panel includes detecting a position of a viewer to output a viewer position detection signal, determining whether the position of the viewer is in a first area or in a second area based on the viewer position detection signal to output a viewer position signal, and driving a unit pixel of the display panel using a plurality of gamma values according to the viewer position signal. The first area is less than a reference distance, and the second area is not less than the reference distance. Thus, side visibility of a display apparatus may be improved.
Abstract:
A light source device includes a light source module having a light-emitting block, an image analysis part, a duty ratio calculation part, a duty ratio determination part and a signal generation part. The image analysis part extracts representative luminance data of the light-emitting block based on pixel data. The duty ratio calculation part calculates duty ratio data of the light-emitting block based on the representative luminance data. The duty ratio determination part generates determined duty ratio data of the light-emitting block based on the duty ratio data from a first period, and the signal generation part generates a driving signal having a duty ratio corresponding to the determined duty ratio data to drive the light-emitting block.
Abstract:
A display device including: a display panel; and a signal controller which controls signals for driving the display panel, where the signal controller includes a representative value generator which sequentially operates a portion of image data of one frame, where the representative value generator moves a last position digit into another position digit of the portion of the image data and generates a representative value representing a portion of a frame image corresponding to the portion of the image data; a storage portion which stores the representative value therein; and a comparator which compares the representative values of present and prior frames to determine whether the portion of the frame image is a still image or a motion picture, and the signal controller controls the signals for driving the display panel such that a driving frequency for the still image is lower than a driving frequency for the motion picture.
Abstract:
A controller controls the driving frequency and voltages for a display device. If image data corresponds to a moving picture, the controller drives a data driver and a gate driver at a moving picture frequency. If image data corresponds to a still image, drives the data driver and the gate driver at a still image frequency lower frequency than the moving picture frequency. When the still image is to be displayed, the signal controller also controls leakage current of a thin film transistor of a pixel based on a representative value of the image data, such that positive leakage current applied for a positive data voltage is equal to negative leakage current applied for a negative data voltage.
Abstract:
A driving method of a display device includes: determining each of a plurality of pixel rows of the display device as one of a motion picture display pixel row and a still image display pixel row by comparing image data of each of the pixel rows in a current frame and in a previous frame; and driving the motion picture display pixel row with a motion picture frequency and driving the still image display pixel row with a still image display frequency, which is lower than or equal to the motion picture frequency, where a plurality of still image display pixel rows are driven with at least two still image display frequencies.
Abstract:
A display device configured to consume less power is disclosed. In one aspect, the display device includes a display panel comprising a pixel connected to a gate line and a data line, a data driver connected to the data line to apply a data voltage, and a gate driver connected to the gate line to sequentially apply a gate-on voltage. The display device additionally includes a signal controller configured to determine image data as corresponding to one of a motion picture, a still image, and a text screen. Furthermore, the signal controller is configured to drive the display panel, the data driver, and the gate driver at one of a motion picture frequency for displaying the motion picture, a still image frequency lower than the motion picture frequency for displaying the still image, and an ultra-low frequency of about 10 Hz or less for displaying the text screen.
Abstract:
A controller controls the driving frequency and voltages for a display device. If image data corresponds to a moving picture, the controller drives a data driver and a gate driver at a moving picture frequency. If image data corresponds to a still image, drives the data driver and the gate driver at a still image frequency lower frequency than the moving picture frequency. When the still image is to be displayed, the signal controller also controls leakage current of a thin film transistor of a pixel based on a representative value of the image data, such that positive leakage current applied for a positive data voltage is equal to negative leakage current applied for a negative data voltage.
Abstract:
A display device includes a display panel including a gate line, a data line, and a pixel connected to the gate line and the data line, a data driver connected to the data line, a gate driver connected to the gate line, and a signal controller controlling the data driver and the gate driver, wherein a circuits powering power source voltage that is normally used for driving the data driver is selectively not applied during a new-image blanking time when the signal controller is not supplying image data to the data driver.
Abstract:
According to some embodiments of the present invention, there is provided a liquid crystal display device including a display panel configured to receive a plurality of gate signals and a plurality of data voltages and to display an image based on a plurality of frames, a timing controller configured to generate a data control signal and a plurality of vertical start signals corresponding to the frames, a gate driving unit configured to output a plurality of gate signals in response to a vertical start signal according to each frame, and a data driving unit configured to generate the data voltages in response to the data control signal, wherein the timing controller is configured to set activation times of the vertical start signals corresponding to the frames differently to allow the frames to have different frequencies.
Abstract:
A controller controls the driving frequency and voltages for a display device. If image data corresponds to a moving picture, the controller drives a data driver and a gate driver at a moving picture frequency. If image data corresponds to a still image, drives the data driver and the gate driver at a still image frequency lower frequency than the moving picture frequency. When the still image is to be displayed, the signal controller also controls leakage current of a thin film transistor of a pixel based on a representative value of the image data, such that positive leakage current applied for a positive data voltage is equal to negative leakage current applied for a negative data voltage.