Abstract:
A borole compound is represented by Formula 1: X11—(R11)b11. X11, R11, and b11 are as defined herein. An organic light-emitting device includes the borole compound. The organic light-emitting device includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer. The organic layer includes the borole compound.
Abstract:
The present disclosure relates to a photosensitive composition for a green color filter. More particularly, the present disclosure relates to a dye for a green color filter which has a high light transmittance; a photosensitive composition including the dye; and a green color filter manufactured using the photosensitive composition.
Abstract:
A dibenzoborole-based compound and an organic light-emitting device including the same. The dibenzoborole-based compound is represented by the formula A1-(A2)n1, wherein A1 may be selected from specific aromatic and non-aromatic carbocycles and heterocycles, n1 may be an integer selected from 1 to 10, and each A2 moiety may independently be selected from a group represented by Formula 2: The dibenzoborole-based compound may be included in the hole transport region or hole transport layer. When the dibenzoborole-based compound has strong electron acceptor characteristics, the hole injection barrier between the anode and the organic layer may be reduced, and thus, an organic light-emitting device including the dibenzoborole-based compound may have high efficiency and a long lifespan.
Abstract:
Embodiments provide a light-emitting device including an organometallic compound, an electronic apparatus including the light-emitting device, and an electronic device including the light-emitting device. The light-emitting device includes a first electrode, a second electrode facing the first electrode, an interlayer between the first electrode and the second electrode and comprising an emission layer, and the organometallic compound. The organometallic compound is represented by Formula 1, which is explained in the specification:
Abstract:
Provided are a near-infrared light-emitting diode including an osmium (Os)-containing organometallic compound and a device including the near-infrared light-emitting diode. The near-infrared light-emitting diode includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, where the organic layer includes a near-infrared light-emitting layer, the near-infrared light-emitting layer includes the osmium (Os)-containing organometallic compound.
Abstract:
An organometallic compound is represented by Formula 1. An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode and including an emission layer. The organic light-emitting device further includes at least one organometallic compound represented by Formula 1.
Abstract:
Provided are an organometallic compound represented by Formula 1, an organic light-emitting device including the organometallic compound, and an organic light-emitting apparatus including the organic light-emitting device. The organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and at least one of the organometallic compound represented by Formula 1.
Abstract:
A deposition apparatus includes a chamber, a stage which is disposed within the chamber and on which a target substrate is seated, a deposition source disposed within the chamber and including a deposition material, a plurality of nozzles connected to the deposition source within the chamber to inject the deposition material in a direction of the stage, and an ionizer disposed between the nozzles and the stage to charge the deposition material injected from the nozzles. A first electric field is generated in each of the ionizer and the nozzles, and a second electric field having an intensity less than the first electric field is generated between the stage and the ionizer. Each of the nozzles includes a plurality of protrusion tips disposed on an inner surface of each of the nozzles to charge the deposition material.
Abstract:
A dibenzoborole-based compound and an organic light-emitting device including the same. The dibenzoborole-based compound is represented by the formula A1-(A2)n1, wherein A1 may be selected from specific aromatic and non-aromatic carbocycles and heterocycles, n1 may be an integer selected from 1 to 10, and each A2 moiety may independently be selected from a group represented by Formula 2: The dibenzoborole-based compound may be included in the hole transport region or hole transport layer. When the dibenzoborole-based compound has strong electron acceptor characteristics, the hole injection barrier between the anode and the organic layer may be reduced, and thus, an organic light-emitting device including the dibenzoborole-based compound may have high efficiency and a long lifespan.
Abstract:
An organic light-emitting device including: a first electrode, a hole transport region including a first hole transport layer (HTL), an emission layer, an electron transport region; and a second electrode; wherein the first HTL includes a first compound and a second compound, the emission layer includes a third compound and a fourth compound, the electron affinity of the second compound is greater than the electron affinity of the first compound, a lowest unoccupied molecular orbital (LUMO) energy level of the fourth compound is greater than a LUMO energy level of the third compound, the second compound and the third compound are different from each other, and the minimum anionic dissociation energy of the second compound is greater than the triplet energy of the third compound.