Abstract:
A magnetic stack includes a interlayer structure and a magnetic recording layer disposed over the interlayer in the magnetic stack. The magnetic recording layer includes substantially ordered L10, oriented crystalline magnetic grains laterally separated by a nonmagnetic, segregant material. The interlayer structure comprises a first layer having cubic crystal structure including oriented crystalline grains and a second layer having crystalline grains laterally separated by a segregant material. The crystalline grains of the second layer are arranged in substantially vertically contiguous alignment with the crystalline grains of the first layer and the segregant material of the magnetic recording layer is arranged in substantially vertically contiguous alignment with the segregant material of the second layer.
Abstract:
A stack includes a substrate, a magnetic recording layer comprising FePtX disposed over the substrate, and a capping layer disposed on the magnetic recording layer. The capping layer comprises Co; at least one rare earth element; one or more elements selected from a group consisting of Fe and Pt; and an amorphizing agent comprising one to three elements selected from a group consisting of B, Zr, Ta, Cr, Nb, W, V, and Mo.
Abstract:
An apparatus comprises a spindle to rotate a magnetic recording medium and a magnetic field generator to expose a track of the medium to a DC magnetic field. The magnetic field generator is configured to saturate the track during an erase mode and reverse the DC magnetic field impinging the track during a writing mode. A laser arrangement heats the track during the erase mode and, during the writing mode, heats the track while the track is exposed to the reversed DC magnetic field so as to write a magnetic pattern thereon. A reader reads the magnetic pattern and generates a read signal. A processor is coupled to the reader and configured to measure one or more magnetic properties of the track using the read signal. The apparatus can further comprise a Kerr sensor that generates a Kerr signal using the magnetic pattern.
Abstract:
An apparatus comprises a spindle to rotate a magnetic recording medium and a magnetic field generator to expose a track of the medium to a DC magnetic field. The magnetic field generator is configured to saturate the track during an erase mode and reverse the DC magnetic field impinging the track during a writing mode. A laser arrangement heats the track during the erase mode and, during the writing mode, heats the track while the track is exposed to the reversed DC magnetic field so as to write a magnetic pattern thereon. A reader reads the magnetic pattern and generates a read signal. A processor is coupled to the reader and configured to measure one or more magnetic properties of the track using the read signal. The apparatus can further comprise a Kerr sensor that generates a Kerr signal using the magnetic pattern.
Abstract:
A stack includes a substrate and a magnetic recording layer. Disposed between the substrate and magnetic recording layer is an MgO—Ti(ON) layer.