Abstract:
The present subject matter includes reality multisensory display device (MSD) to be used by a wearer having an ear. The device includes a head-mounted display, display circuitry configured to provide signals to the head-mounted display, audio circuitry configured to augment audio delivered to the wearer, and a receiver configured to be worn in or on the ear of the wearer and to play audio to the wearer. In various embodiments, a cable assembly is configured to connect the receiver to the audio circuitry.
Abstract:
Method and apparatus for environment detection and adaptation in hearing assistance devices. Performance of feature extraction and environment detection to perform adaptation to hearing assistance device operation for a number of hearing assistance environments. The system detecting various noise sources independent of speech. The system determining adaptive actions to take place based on predicted sound class. The system providing individually customizable response to inputs from different sound classes. In various embodiments, the system employing a Bayesian classifier to perform sound classifications using a priori probability data and training data for predetermined sound classes. Additional method and apparatus can be found in the specification and as provided by the attached claims and their equivalents.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
The present application provides method and apparatus for a binaural hearing assistance system using a monaural audio signal input. The system, in various examples, provides adjustable delay/phase adjustment and sound level adjustment. Different embodiments are provided for receiving the monaural signal and distributing it to a plurality of hearing assistance devices. Different relaying modes are provided. Special functions are supported, such as telecoil functions. The system also has examples that account for a head-related transfer function in providing advanced sound processing for the wearer. Other examples are provided that are described in the detailed description.
Abstract:
A hearing assistance system for delivering sounds to a listener provides for subjective, listener-driven programming of a hearing assistance device, such as a hearing aid, using a perceptual model. The system produces a distribution of presets using a perceptual model selected for the listener and allows the listener to navigate through the distribution to adjust parameters of a signal processing algorithm for processing the sounds. The use of the perceptual model increases the potential of fine tuning of the hearing assistance device available to the listener.