NEAR FIELD MAGNETIC INDUCTION COMMUNICATION OVER MULTIPLE CHANNELS

    公开(公告)号:US20220103205A1

    公开(公告)日:2022-03-31

    申请号:US17546861

    申请日:2021-12-09

    Abstract: A hearing device includes first, second, and third antennas oriented respectively along first, second, and third axes that are different from one another. The device includes first channel circuitry coupled to transceive and process antenna signals of each of the antennas. The antennas and the first channel circuitry communicate with another hearing device via a near field magnetic induction (NFMI) signal through a first near field magnetic induction (NFMI) communication channel. Second channel circuitry is coupled to transceive and process the antenna signals of each of the antennas. The antennas and the second channel circuitry communicate with the other device via the NFMI signal through a second NFMI communication channel. Third channel circuitry is coupled to transceive and process the antenna signals of each of the antennas. The antennas and the third channel circuitry communicate with the other device via the NFMI signal through a third NFMI communication channel.

    Ear-worn electronic device incorporating directional magnetic antenna

    公开(公告)号:US10715937B2

    公开(公告)日:2020-07-14

    申请号:US16574663

    申请日:2019-09-18

    Abstract: An ear-worn electronic device includes a housing comprising a first end and an opposing second end, a first side and an opposing second side, and the first and second sides extending between the first and second ends. The first side is configured to contact the wearer's head. A battery is disposed within the housing proximate the first end. An acoustic receiver or an acoustic receiver connector is disposed within the housing proximate the second end. Electronics including a near-field magnetic induction (NFMI) radio are disposed in the housing. A directional magnetic antenna is situated in or on the housing and coupled to the NFMI radio. The antenna comprises a core having a complex shape and a coil wound around a portion of the core. The core comprises a closed end oriented toward a source of magnetic noise and an open end oriented away from the source of magnetic noise.

    EAR-WORN ELECTRONIC DEVICE INCORPORATING DIRECTIONAL MAGNETIC ANTENNA

    公开(公告)号:US20190320269A1

    公开(公告)日:2019-10-17

    申请号:US15952438

    申请日:2018-04-13

    Abstract: An ear-worn electronic device includes a housing comprising a first end and an opposing second end, a first side and an opposing second side, and the first and second sides extending between the first and second ends. The first side is configured to contact the wearer's head. A battery is disposed within the housing proximate the first end. An acoustic receiver or an acoustic receiver connector is disposed within the housing proximate the second end. Electronics including a near-field magnetic induction (NFMI) radio are disposed in the housing. A directional magnetic antenna is situated in or on the housing and coupled to the NFMI radio. The antenna comprises a core having a complex shape and a coil wound around a portion of the core. The core comprises a closed end oriented toward a source of magnetic noise and an open end oriented away from the source of magnetic noise.

    Near field magnetic induction communication over multiple channels

    公开(公告)号:US10404323B2

    公开(公告)日:2019-09-03

    申请号:US15335203

    申请日:2016-10-26

    Abstract: A hearing device includes first, second, and third antennas oriented respectively along first, second, and third axes that are different from one another. The device includes first channel circuitry coupled to transceive and process antenna signals of each of the antennas. The antennas and the first channel circuitry communicate with another hearing device via a near field magnetic induction (NFMI) signal through a first near field magnetic induction (NFMI) communication channel. Second channel circuitry is coupled to transceive and process the antenna signals of each of the antennas. The antennas and the second channel circuitry communicate with the other device via the NFMI signal through a second NFMI communication channel. Third channel circuitry is coupled to transceive and process the antenna signals of each of the antennas. The antennas and the third channel circuitry communicate with the other device via the NFMI signal through a third NFMI communication channel.

Patent Agency Ranking