Abstract:
A method, code and system for planning the treatment a lesion on or adjacent to the retina of an eye of a patient are disclosed. There is first established at least two beam paths along which x-radiation is to be directed at the retinal lesion. Based on the known spectral and intensity characteristics of the beam, a total treatment time for irradiation along each beam paths is determined. From the coordinates of the optic nerve in the aligned eye position, there is determined the extent and duration of eye movement away from the aligned patient-eye position in a direction that moves the patient's optic nerve toward the irradiation beam that will be allowed during treatment, while still maintaining the radiation dose at the patient optic nerve below a predetermined dose level.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, the target tissues inside the global coordinate system lead to direction of an automated positioning system that is directed based on the target tissues within the coordinate system. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, an eye is held with force and in alignment with the system. In some embodiments, the device automatically turns off with excessive movement outside of alignment along an axis of the eye. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A data processing system for use in a solid state flight data recorder wherein a plurality of aircraft parameter signals are processed and stored in electronic memory for later retrieval. The processor identifies those aircraft parameter data signals to be stored and for each such datum signal produces a signal triplet comprised of a parameter label signal, a time tag signal representative of the time interval from a reference time within which the data signal was produced, and the datum signal. A frame of the data bit stream produced by the data processor for storage in the memory includes an initial reference time signal followed at fixed intervals by time tick signals. Each signal triplet is positioned in the data bit stream following that initial reference time signal or time tick signal to which its time tag signal is referenced. By so tiering the data time formatting a substantial compression of data is realized thereby reducing memory size requirements.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system. In some embodiments, the position of the ocular structure is tracked and related to the status of the radiosurgery system. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, the structure is an eye and the eye is tracked by the system. In some embodiments, the eye is held in place and in some embodiments, the eye is fixed by the patient. In some embodiments, a fiducial is placed on the eye to aid in positioning. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that delivers a therapeutic dose of radiation to a target structure in a patient. Some embodiments provide that, among other targets, ocular structures are treated. In some embodiments, the position of an ocular structure is tracked and related to a radiosurgery system. In some embodiments, a treatment plan is utilized for a specific disease to be treated and/or structures to be avoided. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that delivers a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, ocular structures are placed in a global coordinate system, based on ocular imaging, which leads to direction of an automated positioning system. In some embodiments, the position of an ocular structure is tracked and related to a radiosurgery system. In some embodiments, a treatment plan is utilized for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial aids in positioning the system. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, the target tissues inside the global coordinate system lead to direction of an automated positioning system that is directed based on the target tissues within the coordinate system. In some embodiments, a treatment plan is utilised in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.