Abstract:
A method and system for recognizing and verifying the identity of a driver and front seat passenger of a vehicle. A vehicle owner uploads profile data for several individuals who may be a driver or passenger to a database in the vehicle. When a driver or passenger enters the vehicle, the system uses the profile data—which can include height, weight, and gender information about the individual—along with vehicle data such as seat position, to identify the driver or passenger from the database. The profile data for the known individual is then used to adjust the position of the seat and other components in the cockpit. The profile data is also used by various safety and convenience systems onboard the vehicle.
Abstract:
A system and method for providing a vehicle occupant with hands-free usage of text messaging services over a mobile phone via a vehicle telematics unit. The method enables a vehicle occupant to send and receive communication messages such as text messages in a hands-free manner. For sending text messages, a spoken communication message is received from the occupant at the vehicle and sent to a call center for conversion to a text message using a speech to text server. The converted text message is then sent to the mobile phone for texting to the intended recipient. Received text messages can be sent from the mobile phone to the telematics unit, converted to speech and played audibly to the occupant in the vehicle.
Abstract:
A method for controlling a mobile communications device while located in a mobile vehicle involves pairing the mobile communications device with a telematics unit via short range wireless communication. The method further involves, receiving an incoming text message at the mobile device while the mobile device is paired with the telematics unit. Upon receiving the text message, a text messaging management strategy is implemented via the telematics unit and/or the mobile device, where the text messaging management strategy is executable via an application that is resident on the mobile device.
Abstract:
A system and method for providing a vehicle occupant with hands-free usage of text messaging services over a mobile phone via a vehicle telematics unit. The method enables a vehicle occupant to send and receive communication messages such as text messages in a hands-free manner. For sending text messages, a spoken communication message is received from the occupant at the vehicle and sent to a call center for conversion to a text message using a speech to text server. The converted text message is then sent to the mobile phone for texting to the intended recipient. Received text messages can be sent from the mobile phone to the telematics unit, converted to speech and played audibly to the occupant in the vehicle.
Abstract:
The present invention relates to methods of detecting compounds that affect the activity of a therapeutic substance or composition administered to a subject, and to reagents for use in such methods.
Abstract:
Indazolecarboxamides are used as antagonists and partial agonists for the serotonin receptor 5-HT.sub.4 and provide therapeutic methods for treatment of disorders caused by or affected by dysfunction of the 5-HT.sub.4 receptor.
Abstract:
An arrangement for powering a mobile device with a fast charge discharge power source such as a supercapacitor without reliance on resistors to protect device electronics from comparatively high supercapacitor current discharge rates. The arrangement protects device electronics by coordinating a switch with a charge controller to balance recharge of a battery electronically coupled to the supercapacitor. The arrangement and techniques utilized result in a substantially continuous trickle charging of the battery from the supercapacitor. In this way, the battery is continuously charged so long as the supercapacitor holds power and the battery remains the safe medium through which device electronics are powered.
Abstract:
A system and method for detecting a missing vehicle tire and notifying a user of the vehicle about a potential vehicle tire theft. The method carried out by the system involves detecting that a tire is missing from a vehicle using a vehicle tire pressure monitoring (TPM) system and thereafter providing a notification of the missing tire via a wireless communication sent from a telematics unit on the vehicle. The wireless communication can be sent automatically by the telematics unit in response to the detection. Identification numbers or other data reported by sensors used in the TPM system can be used to determine if a tire is missing.
Abstract:
A method of collecting vehicle operating information using a wireless device includes the steps of communicatively linking a wireless device located within a vehicle to a vehicle telematics unit; receiving vehicle data at the wireless device from the vehicle telematics unit using the link; recording the received vehicle data at the wireless device; detecting that the wireless device is no longer present in the vehicle; and wirelessly transmitting the recorded vehicle data to a central facility using the wireless capabilities of the wireless device based on the detection.
Abstract:
A vehicle-incident detection method is disclosed herein. Vehicle data is received at a cloud computing system from a vehicle, where the vehicle data is generated by the vehicle in response to an initial detection of a vehicle-related event. After receiving the data, the cloud computing system requests additional vehicle data from the vehicle. The additional vehicle data is generated by the vehicle at a time subsequent to the initial detection of the vehicle-related event. The additional vehicle data is received from the vehicle, and an application resident in the cloud computing system analyzes the vehicle data and the additional vehicle data to determine that the vehicle-related event occurred. The application includes computer readable code embedded on a non-transitory, tangible computer readable medium for performing the analyzing. Also disclosed herein is a vehicle-incident detection system.