Abstract:
The invention relates to compositions including a hypohalite or hypochlorous acid and a soluble salt of 2,4,6 mesitylene sulfonate. The compositions may include a surfactant, a buffer, or combinations thereof. Other adjuvants may also be present. Such compositions do not require the inclusion of high concentrations of sodium hydroxide or other soluble hydroxide salts to drastically increase pH (and thus stability), although such hydroxides may be present if desired.
Abstract:
The invention relates to a polymer-micelle complex. The polymer-micelle complexes include a negatively charged micelle that is electrostatically bound to a water-soluble polymer bearing a positive charge. The polymer does not comprise block copolymer, latex particles, polymer nanoparticles, cross-linked polymers, silicone copolymer, fluorosurfactant, or amphoteric copolymer. The compositions do not form a coacervate, and do not form a film when applied to a surface.
Abstract:
A solid composition including calcium and/or magnesium hypochlorite, a builder (e.g., one or more of carbonate, bicarbonate, sesquicarbonate), an acid, a water-soluble polymer, at least one anionic surfactant, and optionally, a hydrotrope. The composition does not include any potassium hypochlorite, sodium hypochlorite, lithium hypochlorite, N-halogenated compounds, peroxides, persulfates, hydantoins, isocyanurates, or carboxylic acids that also have hydroxyl, amino, amido, imino, or imido groups. Upon dissolution of the composition in water, the calcium and/or magnesium hypochlorite and acid react to form hypochlorous acid. The use of hypochlorous acid, rather than direct use of an alkaline or alkaline earth hypochlorite results in a composition that is typically acidic rather than basic, and that results in improved cleaning. The composition is particularly suited for cleaning and disinfecting dentures.
Abstract:
The invention relates to compositions and methods of treatment employing compositions comprising polyelectrolyte complexes. The compositions include a water-soluble first polyelectrolyte bearing a net cationic charge or capable of developing a net cationic charge and a water-soluble second polyelectrolyte bearing a net anionic charge or capable of developing a net anionic charge. The total polyelectrolyte concentration of the first solution is at least 110 millimolar. The composition is free of coacervates, precipitates, latex particles, synthetic block copolymers, silicone copolymers, cross-linked poly(acrylic) and cross-linked water-soluble polyelectrolyte. The composition may be a concentrate, to be diluted prior to use to treat a surface.
Abstract:
The invention relates to compositions and methods of treatment employing compositions comprising polyelectrolyte complexes. The compositions include a water-soluble first polyelectrolyte bearing a net cationic charge or capable of developing a net cationic charge and a water-soluble second polyelectrolyte bearing a net anionic charge or capable of developing a net anionic charge. The total polyelectrolyte concentration of the first solution is at least 110 millimolar. The composition is free of coacervates, precipitates, latex particles, synthetic block copolymers, silicone copolymers, cross-linked poly(acrylic) and cross-linked water-soluble polyelectrolyte. The composition may be a concentrate, to be diluted prior to use to treat a surface.
Abstract:
The present invention relates to aqueous compositions of associative polyelectrolyte complexes (PECs), optionally containing surfactants, biocidal agents and/or oxidants, which can provide a cleaning benefit and surface protection to treated articles including reduced soiling tendency, reduced cleaning effort and improved soil repellancy, as well as providing bacteriostatic properties to treated surfaces that thereby gain resistance to water, environmental exposure and microbial challenge. Treatment means and compositions are provided that employ associative polyelectrolyte complexes formed by combining a water soluble cationic first polyelectrolyte with a water soluble second polyelectrolyte bearing groups of opposite charge to the first polyelectrolyte under suitable mixing conditions and at least one oxidant selected from the group: alkaline metal salts and/or alkaline earth metal salts of hypochlorous acid, hypochlorous acid, solubilized chlorine, any source of free chlorine, acidic sodium chlorite, active chlorine generating compound and any combinations or mixtures thereof. Also provided are means to form stable associative polyelectrolyte complexes with at least one oxidant in aqueous solutions having R values from about 0.10 to 20.
Abstract:
This invention relates to extend the benefits of using hypochlorite compounds such as sodium hypochlorite to clean and disinfect articles while reducing or eliminating the side effects of treating an article with a strong oxidant material. The invention relates to a single step process involving mixing of precursor compositions of a suitable hypohalite or hypohalous acid with a solution of a reducing agent. Optionally a buffer may be present in either or both precursor compositions, such that at time of use such active hypohalous acid concentration in the resulting aqueous mixture remains at a sufficient activity level to effect one or more desired benefits against a target substrate for a desired period of time. The oxidant is substantially consumed by reaction with the reducing agent after the time needed for achieving the desired benefit has passed.
Abstract:
The present invention relates to aqueous compositions of associative polyelectrolyte complexes (PECs), optionally containing surfactants, biocidal agents and/or oxidants, which can provide a cleaning benefit and surface protection to treated articles including reduced soiling tendency, reduced cleaning effort and improved soil repellency, as well as providing bacteriostatic properties to treated surfaces that thereby gain resistance to water, environmental exposure and microbial challenge. Treatment means and compositions are provided that employ associative polyelectrolyte complexes formed by combining a water soluble cationic first polyelectrolyte with a water soluble second polyelectrolyte bearing groups of opposite charge to the first polyelectrolyte under suitable mixing conditions and at least one oxidant selected from the group: alkaline metal salts and/or alkaline earth metal salts of hypochlorous acid, hypochlorous acid, solubilized chlorine, any source of free chlorine, acidic sodium chlorite, active chlorine generating compound and any combinations or mixtures thereof. Also provided are means to form stable associative polyelectrolyte complexes with at least one oxidant in aqueous solutions having R values from about 0.10 to 20.
Abstract:
The invention relates to compositions and methods of treatment employing compositions comprising polyelectrolyte complexes. The compositions include a water-soluble first polyelectrolyte bearing a net cationic charge or capable of developing a net cationic charge and a water-soluble second polyelectrolyte bearing a net anionic charge or capable of developing a net anionic charge. The total polyelectrolyte concentration of the first solution is at least 110 millimolar. The composition is free of coacervates, precipitates, latex particles, synthetic block copolymers, silicone copolymers, cross-linked poly(acrylic) and cross-linked water-soluble polyelectrolyte. The composition may be a concentrate, to be diluted prior to use to treat a surface.
Abstract:
The invention relates to compositions, methods of use, and methods of manufacture for an intercalated bleach compound and compositions thereof. The intercalated bleach compound has the formula Mx(OCl)y(O)m(OH)n where M is an alkaline earth metal such as magnesium, calcium or mixture thereof. The values of x and y independently equal any number greater than or equal to 1 (e.g., 1, 2, 3, 4, etc.), and m and n independently equal any number greater than or equal to 0 (e.g., 0, 1, 2, 3, 4, etc.), but m and n are not both 0. In addition, the molar ratio of the alkaline earth metal (e.g., magnesium or calcium) to hypochlorite is at least 3:1. In other words, x is ≥3y. The compounds exhibit excellent stability, little or no chlorine bleach odor, exhibit excellent pH buffering characteristics, and less reactivity with organic materials as compared to alternative chlorine bleach products.